当前位置: 首页 > news >正文

【机器学习】python基础实现线性回归

手写梯度下降的实现y=kx+b的线性回归

算法步骤:

(1)构造数据,y=3*x+5;

(2)随机初始化\hat{k}\hat{b},任意数值,例如\hat{k}=9,\hat{b}=10;

(3)计算\hat{y}\hat{y}=\hat{k}x+\hat{b},并计算loss=(y-\hat{y})^{^{2}}=(y-(\hat{k}x+\hat{b}))^{2}

(4)分别对\hat{k}\hat{b}求导数,\hat{k}=\hat{k}-\Delta \hat{k}\hat{b}=\hat{b}-\Delta \hat{b}

        其中

      \Delta \hat{k}={\frac{\partial loss}{\partial \hat{k}}}=-2(y-({\hat{k}x+\hat{b})})\cdot x

\Delta \hat{b}={\frac{\partial loss}{\partial \hat{b}}}=-2(y-({\hat{k}x+\hat{b})})

重复循环n次后停止

构造线性函数:

      y=kx+b\ \ (k=3,b=5)

 代码实现:

X=[i for i in range(0,15)]k=3
b=5
Y=[k*i+b for i in X]import matplotlib.pyplot as plt
fig, ax = plt.subplots()# 在同一个图形中绘制散点图和折线图
ax.scatter(X, Y, color='blue', label='scatter')
ax.plot(X, Y, color='red', label='line')# 添加图例
ax.legend()# 显示图形
plt.show()

 

MSE损失函数:

loss=(y-\hat{y})^{^{2}}=(y-(\hat{k}x+\hat{b}))^{2}

loss.append((Y[i]-y_[i])**2)  #公式对应代码

分别对k和b求导结果如图所示:

{\frac{\partial loss}{\partial \hat{k}}}=-2(y-({\hat{k}x+\hat{b})})\cdot x

{\frac{\partial loss}{\partial \hat{b}}}=-2(y-({\hat{k}x+\hat{b})})

#公式对应代码
delta_K_sum.append((Y[i]-y_[i])*(-2)*X[i])
delta_B_sum.append((Y[i]-y_[i])*(-2))

全部代码:

X=[i for i in range(0,15)]
X
k=3
b=5
Y=[k*i+b for i in X]
Y
import matplotlib.pyplot as plt
# 创建散点图
plt.scatter(X, Y)# 显示图形
plt.show()
#随机初始化要求的k和b
K=8
B=10
#k和b是正确答案,根据数据和随机初始化的K和B去拟合函数,找到最优的k和b
#y=Kx+B
loss=[]#计算预测值
for i in range(1000):y_=[K*i+B for i in X]loss=[]for i in range(len(X)):loss.append((Y[i]-y_[i])**2)print(sum(loss)/len(loss))# cha=loss.sum()/len(loss)#计算loss#根据最小二乘法  对y_求导,等我用纸写一下,利用loss对K求梯度,去更新K的值,对B求梯度,求更新B的值#直到K和B基本拟合图像delta_K_sum=[]delta_B_sum=[]for i in range(len(X)):delta_K_sum.append((Y[i]-y_[i])*(-2)*X[i])delta_B_sum.append((Y[i]-y_[i])*(-2))delta_K=sum(delta_K_sum)/len(delta_K_sum)delta_B=sum(delta_B_sum)/len(delta_B_sum)#0.01是学习率,保证稳定收敛K=K-0.01*delta_KB=B-0.01*delta_Bprint(K,B)
print(K,B)

结果图像:

X=[i for i in range(0,15)]Y=[K*i+B for i in X]import matplotlib.pyplot as plt
fig, ax = plt.subplots()# 在同一个图形中绘制散点图和折线图
ax.scatter(X, Y, color='blue', label='scatter')
ax.plot(X, Y, color='red', label='line')# 添加图例
ax.legend()# 显示图形
plt.show()

相关文章:

【机器学习】python基础实现线性回归

手写梯度下降的实现ykxb的线性回归 算法步骤: (1)构造数据,y3*x5; (2)随机初始化和,任意数值,例如9,10; (3)计算,,并计算 (4&…...

vue table合并行 动态列名

需求: 1.合并行,相同数据合并 2,根据后端返回数据动态显示列名, 我这个业务需求是,每年增加一列,也就是列名不是固定的,后端返回数据每年会多一条数据,根据返回数据显示列名 实现: html <el-table v-loading"loading" :data"dataList" :span-metho…...

Spring Cloud Alibaba-Nacos Discovery--服务治理

1 服务治理介绍 先来思考一个问题 通过上一章的操作&#xff0c;我们已经可以实现微服务之间的调用。但是我们把服务提供者的网络地址 &#xff08;ip&#xff0c;端口&#xff09;等硬编码到了代码中&#xff0c;这种做法存在许多问题&#xff1a; 一旦服务提供者地址变化&am…...

【C++】unordered_map和unordered_set的使用 及 OJ练习

文章目录 前言1. unordered系列关联式容器2. map、set系列容器和unordered_map、unordered_set系列容器的区别3. unordered_map和unordered_set的使用4. set与unordered_set性能对比5. OJ练习5.1 在长度 2N 的数组中找出重复 N 次的元素思路分析AC代码 5.2 两个数组的交集思路分…...

初识 JVM 01

JVM JRE JDK的关系 JVM 的内存机构 程序计数器 java指令的执行流程&#xff1a; 1 右侧的java源代码编译为左侧的java字节码&#xff08;右侧第一个方块对应左侧第一个方块&#xff09; 2 字节码 经过解释器 变为机器码 3 机器码就可以被cpu来执行 程序计数器的作用就…...

FPGA应用学习笔记----I2S和总结

时序一致在慢时序方便得多 增加了时序分布和分析的复杂性 使用fifo会开销大量资源...

归并排序之从微观看递归

前言 这次&#xff0c;并不是具体讨论归并排序算法&#xff0c;而是利用归并排序算法&#xff0c;探讨一下递归。归并排序的特点在于连续使用了两次递归调用&#xff0c;这次我们将从微观上观察递归全过程&#xff0c;从本质上理解递归&#xff0c;如果能看完&#xff0c;你一…...

Pytorch-day07-模型保存与读取

PyTorch 模型保存&读取 模型存储模型单卡存储&多卡存储模型单卡读取&多卡读取 1、模型存储 PyTorch存储模型主要采用pkl&#xff0c;pt&#xff0c;pth三种格式,就使用层面来说没有区别PyTorch模型主要包含两个部分&#xff1a;模型结构和权重。其中模型是继承n…...

【C语言每日一题】01. Hello, World!

题目来源&#xff1a;http://noi.openjudge.cn/ch0101/01/ 01. Hello, World! 总时间限制: 1000ms 内存限制: 65536kB 问题描述 对于大部分编程语言来说&#xff0c;编写一个能够输出“Hello, World!”的程序往往是最基本、最简单的。因此&#xff0c;这个程序常常作为一个初…...

arm: day8

1.中断实验&#xff1a;按键控制led灯 流程&#xff1a; key.h /*************************************************************************> File Name: include/key.h> Created Time: 2023年08月21日 星期一 17时03分20秒***************************************…...

k8s容器加入host解析字段

一、通过edit或path来修改 kubectl edit deploy /xxxxx. x-n cattle-system xxxxx为你的资源对象名称 二、添加字段 三、code hostAliases:- hostnames:- www.rancher.localip: 10.10.2.180...

浅谈开发过程中完善的注释的重要性

第一部分&#xff1a;引言 1.1 简述编程注释的定义和功能 编程注释是一种在源代码中添加的辅助性文字&#xff0c;它不参与编译或执行&#xff0c;但对于理解源代码起着至关重要的作用。注释可以简单地描述代码的功能&#xff0c;也可以详细地解释算法的工作原理、设计决策的…...

Docker 微服务实战

1. 通过IDEA新建一个普通微服务模块 1.1 建Module docker_boot 1.2 改写pom <?xml version"1.0" encoding"UTF-8"?><project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance&…...

JupyterHub实战应用

一、JupyerHub jupyter notebook 是一个非常有用的工具&#xff0c;我们可以在浏览器中任意编辑调试我们的python代码&#xff0c;并且支持markdown 语法&#xff0c;可以说是科研利器。但是这种情况适合个人使用&#xff0c;也就是jupyter notebook以我们自己的主机作为服务器…...

【MySQL】视图

目录 一、什么是视图 二、视图的操作 2.1 创建视图 2.2 删除视图 三、视图规则和限制 一、什么是视图 视图是一个虚拟表&#xff0c;其内容由查询定义。同真实的表一样&#xff0c;视图包含一系列带有名称的列和行数据。视图的数据变化会影响到基表&#xff08;创建视图所…...

基于 Android 剧院购票APP的开发与设计

摘要&#xff1a;近年来&#xff0c;随着社会的发展和科技方面的创新&#xff0c;越来越多的人选择使用手机应用程序来购买剧场票。本文将探讨基于 Android 平台的剧院购票应用程序的开发和设计。该应用程序将为用户提供浏览剧场列表、查看剧场详情、选择座位并购买剧场票的功能…...

反转链表II

江湖一笑浪滔滔&#xff0c;红尘尽忘了 题目 示例 思路 链表这部分的题&#xff0c;不少都离不开单链表的反转&#xff0c;参考&#xff1a;反转一个单链表 这道题加上哨兵位的话会简单很多&#xff0c;如果不加的话&#xff0c;还需要分情况一下&#xff0c;像是从头节点开始…...

HTML 和 CSS 来实现毛玻璃效果(Glassmorphism)

毛玻璃效果简介 它的主要特征就是半透明的背景&#xff0c;以及阴影和边框。 同时还要为背景加上模糊效果&#xff0c;使得背景之后的元素根据自身内容产生漂亮的“变形”效果&#xff0c;示例&#xff1a; 代码实现 首先&#xff0c;创建一个 HTML 文件&#xff0c;写入如下…...

【技术】国标GB28181视频平台EasyGBS通过对应密钥上传到其他平台展示的详细步骤

国标GB28181协议视频平台EasyGBS是基于国标GB28181协议的视频云服务平台&#xff0c;支持多路设备同时接入&#xff0c;并对多平台、多终端分发出RTSP、RTMP、FLV、HLS、WebRTC等格式的视频流。平台可提供视频监控直播、云端录像、云存储、检索回放、智能告警、语音对讲、平台级…...

SpeedBI数据可视化工具:浏览器上做分析

SpeedBI数据分析云是一种在浏览器上进行数据可视化分析的工具&#xff0c;它能够将数据以可视化的形式呈现出来&#xff0c;并支持多种数据源和图表类型。 所有操作&#xff0c;均在浏览器上进行 在浏览器中打开SpeedBI数据分析云官网&#xff0c;点击【免费使用】进入&#…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

蓝桥杯 冶炼金属

原题目链接 &#x1f527; 冶炼金属转换率推测题解 &#x1f4dc; 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V&#xff0c;是一个正整数&#xff0c;表示每 V V V 个普通金属 O O O 可以冶炼出 …...