当前位置: 首页 > news >正文

【机器学习】python基础实现线性回归

手写梯度下降的实现y=kx+b的线性回归

算法步骤:

(1)构造数据,y=3*x+5;

(2)随机初始化\hat{k}\hat{b},任意数值,例如\hat{k}=9,\hat{b}=10;

(3)计算\hat{y}\hat{y}=\hat{k}x+\hat{b},并计算loss=(y-\hat{y})^{^{2}}=(y-(\hat{k}x+\hat{b}))^{2}

(4)分别对\hat{k}\hat{b}求导数,\hat{k}=\hat{k}-\Delta \hat{k}\hat{b}=\hat{b}-\Delta \hat{b}

        其中

      \Delta \hat{k}={\frac{\partial loss}{\partial \hat{k}}}=-2(y-({\hat{k}x+\hat{b})})\cdot x

\Delta \hat{b}={\frac{\partial loss}{\partial \hat{b}}}=-2(y-({\hat{k}x+\hat{b})})

重复循环n次后停止

构造线性函数:

      y=kx+b\ \ (k=3,b=5)

 代码实现:

X=[i for i in range(0,15)]k=3
b=5
Y=[k*i+b for i in X]import matplotlib.pyplot as plt
fig, ax = plt.subplots()# 在同一个图形中绘制散点图和折线图
ax.scatter(X, Y, color='blue', label='scatter')
ax.plot(X, Y, color='red', label='line')# 添加图例
ax.legend()# 显示图形
plt.show()

 

MSE损失函数:

loss=(y-\hat{y})^{^{2}}=(y-(\hat{k}x+\hat{b}))^{2}

loss.append((Y[i]-y_[i])**2)  #公式对应代码

分别对k和b求导结果如图所示:

{\frac{\partial loss}{\partial \hat{k}}}=-2(y-({\hat{k}x+\hat{b})})\cdot x

{\frac{\partial loss}{\partial \hat{b}}}=-2(y-({\hat{k}x+\hat{b})})

#公式对应代码
delta_K_sum.append((Y[i]-y_[i])*(-2)*X[i])
delta_B_sum.append((Y[i]-y_[i])*(-2))

全部代码:

X=[i for i in range(0,15)]
X
k=3
b=5
Y=[k*i+b for i in X]
Y
import matplotlib.pyplot as plt
# 创建散点图
plt.scatter(X, Y)# 显示图形
plt.show()
#随机初始化要求的k和b
K=8
B=10
#k和b是正确答案,根据数据和随机初始化的K和B去拟合函数,找到最优的k和b
#y=Kx+B
loss=[]#计算预测值
for i in range(1000):y_=[K*i+B for i in X]loss=[]for i in range(len(X)):loss.append((Y[i]-y_[i])**2)print(sum(loss)/len(loss))# cha=loss.sum()/len(loss)#计算loss#根据最小二乘法  对y_求导,等我用纸写一下,利用loss对K求梯度,去更新K的值,对B求梯度,求更新B的值#直到K和B基本拟合图像delta_K_sum=[]delta_B_sum=[]for i in range(len(X)):delta_K_sum.append((Y[i]-y_[i])*(-2)*X[i])delta_B_sum.append((Y[i]-y_[i])*(-2))delta_K=sum(delta_K_sum)/len(delta_K_sum)delta_B=sum(delta_B_sum)/len(delta_B_sum)#0.01是学习率,保证稳定收敛K=K-0.01*delta_KB=B-0.01*delta_Bprint(K,B)
print(K,B)

结果图像:

X=[i for i in range(0,15)]Y=[K*i+B for i in X]import matplotlib.pyplot as plt
fig, ax = plt.subplots()# 在同一个图形中绘制散点图和折线图
ax.scatter(X, Y, color='blue', label='scatter')
ax.plot(X, Y, color='red', label='line')# 添加图例
ax.legend()# 显示图形
plt.show()

相关文章:

【机器学习】python基础实现线性回归

手写梯度下降的实现ykxb的线性回归 算法步骤: (1)构造数据,y3*x5; (2)随机初始化和,任意数值,例如9,10; (3)计算,,并计算 (4&…...

vue table合并行 动态列名

需求: 1.合并行,相同数据合并 2,根据后端返回数据动态显示列名, 我这个业务需求是,每年增加一列,也就是列名不是固定的,后端返回数据每年会多一条数据,根据返回数据显示列名 实现: html <el-table v-loading"loading" :data"dataList" :span-metho…...

Spring Cloud Alibaba-Nacos Discovery--服务治理

1 服务治理介绍 先来思考一个问题 通过上一章的操作&#xff0c;我们已经可以实现微服务之间的调用。但是我们把服务提供者的网络地址 &#xff08;ip&#xff0c;端口&#xff09;等硬编码到了代码中&#xff0c;这种做法存在许多问题&#xff1a; 一旦服务提供者地址变化&am…...

【C++】unordered_map和unordered_set的使用 及 OJ练习

文章目录 前言1. unordered系列关联式容器2. map、set系列容器和unordered_map、unordered_set系列容器的区别3. unordered_map和unordered_set的使用4. set与unordered_set性能对比5. OJ练习5.1 在长度 2N 的数组中找出重复 N 次的元素思路分析AC代码 5.2 两个数组的交集思路分…...

初识 JVM 01

JVM JRE JDK的关系 JVM 的内存机构 程序计数器 java指令的执行流程&#xff1a; 1 右侧的java源代码编译为左侧的java字节码&#xff08;右侧第一个方块对应左侧第一个方块&#xff09; 2 字节码 经过解释器 变为机器码 3 机器码就可以被cpu来执行 程序计数器的作用就…...

FPGA应用学习笔记----I2S和总结

时序一致在慢时序方便得多 增加了时序分布和分析的复杂性 使用fifo会开销大量资源...

归并排序之从微观看递归

前言 这次&#xff0c;并不是具体讨论归并排序算法&#xff0c;而是利用归并排序算法&#xff0c;探讨一下递归。归并排序的特点在于连续使用了两次递归调用&#xff0c;这次我们将从微观上观察递归全过程&#xff0c;从本质上理解递归&#xff0c;如果能看完&#xff0c;你一…...

Pytorch-day07-模型保存与读取

PyTorch 模型保存&读取 模型存储模型单卡存储&多卡存储模型单卡读取&多卡读取 1、模型存储 PyTorch存储模型主要采用pkl&#xff0c;pt&#xff0c;pth三种格式,就使用层面来说没有区别PyTorch模型主要包含两个部分&#xff1a;模型结构和权重。其中模型是继承n…...

【C语言每日一题】01. Hello, World!

题目来源&#xff1a;http://noi.openjudge.cn/ch0101/01/ 01. Hello, World! 总时间限制: 1000ms 内存限制: 65536kB 问题描述 对于大部分编程语言来说&#xff0c;编写一个能够输出“Hello, World!”的程序往往是最基本、最简单的。因此&#xff0c;这个程序常常作为一个初…...

arm: day8

1.中断实验&#xff1a;按键控制led灯 流程&#xff1a; key.h /*************************************************************************> File Name: include/key.h> Created Time: 2023年08月21日 星期一 17时03分20秒***************************************…...

k8s容器加入host解析字段

一、通过edit或path来修改 kubectl edit deploy /xxxxx. x-n cattle-system xxxxx为你的资源对象名称 二、添加字段 三、code hostAliases:- hostnames:- www.rancher.localip: 10.10.2.180...

浅谈开发过程中完善的注释的重要性

第一部分&#xff1a;引言 1.1 简述编程注释的定义和功能 编程注释是一种在源代码中添加的辅助性文字&#xff0c;它不参与编译或执行&#xff0c;但对于理解源代码起着至关重要的作用。注释可以简单地描述代码的功能&#xff0c;也可以详细地解释算法的工作原理、设计决策的…...

Docker 微服务实战

1. 通过IDEA新建一个普通微服务模块 1.1 建Module docker_boot 1.2 改写pom <?xml version"1.0" encoding"UTF-8"?><project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance&…...

JupyterHub实战应用

一、JupyerHub jupyter notebook 是一个非常有用的工具&#xff0c;我们可以在浏览器中任意编辑调试我们的python代码&#xff0c;并且支持markdown 语法&#xff0c;可以说是科研利器。但是这种情况适合个人使用&#xff0c;也就是jupyter notebook以我们自己的主机作为服务器…...

【MySQL】视图

目录 一、什么是视图 二、视图的操作 2.1 创建视图 2.2 删除视图 三、视图规则和限制 一、什么是视图 视图是一个虚拟表&#xff0c;其内容由查询定义。同真实的表一样&#xff0c;视图包含一系列带有名称的列和行数据。视图的数据变化会影响到基表&#xff08;创建视图所…...

基于 Android 剧院购票APP的开发与设计

摘要&#xff1a;近年来&#xff0c;随着社会的发展和科技方面的创新&#xff0c;越来越多的人选择使用手机应用程序来购买剧场票。本文将探讨基于 Android 平台的剧院购票应用程序的开发和设计。该应用程序将为用户提供浏览剧场列表、查看剧场详情、选择座位并购买剧场票的功能…...

反转链表II

江湖一笑浪滔滔&#xff0c;红尘尽忘了 题目 示例 思路 链表这部分的题&#xff0c;不少都离不开单链表的反转&#xff0c;参考&#xff1a;反转一个单链表 这道题加上哨兵位的话会简单很多&#xff0c;如果不加的话&#xff0c;还需要分情况一下&#xff0c;像是从头节点开始…...

HTML 和 CSS 来实现毛玻璃效果(Glassmorphism)

毛玻璃效果简介 它的主要特征就是半透明的背景&#xff0c;以及阴影和边框。 同时还要为背景加上模糊效果&#xff0c;使得背景之后的元素根据自身内容产生漂亮的“变形”效果&#xff0c;示例&#xff1a; 代码实现 首先&#xff0c;创建一个 HTML 文件&#xff0c;写入如下…...

【技术】国标GB28181视频平台EasyGBS通过对应密钥上传到其他平台展示的详细步骤

国标GB28181协议视频平台EasyGBS是基于国标GB28181协议的视频云服务平台&#xff0c;支持多路设备同时接入&#xff0c;并对多平台、多终端分发出RTSP、RTMP、FLV、HLS、WebRTC等格式的视频流。平台可提供视频监控直播、云端录像、云存储、检索回放、智能告警、语音对讲、平台级…...

SpeedBI数据可视化工具:浏览器上做分析

SpeedBI数据分析云是一种在浏览器上进行数据可视化分析的工具&#xff0c;它能够将数据以可视化的形式呈现出来&#xff0c;并支持多种数据源和图表类型。 所有操作&#xff0c;均在浏览器上进行 在浏览器中打开SpeedBI数据分析云官网&#xff0c;点击【免费使用】进入&#…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

​​企业大模型服务合规指南:深度解析备案与登记制度​​

伴随AI技术的爆炸式发展&#xff0c;尤其是大模型&#xff08;LLM&#xff09;在各行各业的深度应用和整合&#xff0c;企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者&#xff0c;还是积极拥抱AI转型的传统企业&#xff0c;在面向公众…...

RushDB开源程序 是现代应用程序和 AI 的即时数据库。建立在 Neo4j 之上

一、软件介绍 文末提供程序和源码下载 RushDB 改变了您处理图形数据的方式 — 不需要 Schema&#xff0c;不需要复杂的查询&#xff0c;只需推送数据即可。 二、Key Features ✨ 主要特点 Instant Setup: Be productive in seconds, not days 即时设置 &#xff1a;在几秒钟…...

Linux入门(十五)安装java安装tomcat安装dotnet安装mysql

安装java yum install java-17-openjdk-devel查找安装地址 update-alternatives --config java设置环境变量 vi /etc/profile #在文档后面追加 JAVA_HOME"通过查找安装地址命令显示的路径" #注意一定要加$PATH不然路径就只剩下新加的路径了&#xff0c;系统很多命…...