清风数学建模——拟合算法
拟合算法

文章目录
- 拟合算法
- 概念
- 确定拟合曲线
- 最小二乘法的几何解释
- 求解最小二乘法
- matlab求解最小二乘法
- 如何评价拟合的好坏
- 计算拟合优度的代码
概念
在前面的篇幅中提到可以使用插值算法,通过给定的样本点推算出一定的曲线从而推算出一些想要的值。但存在一些问题。一是若样本点过多,那么多项式的次数过高会造成龙格现象;二是为了避免龙格现象而通过分段的思想求得拟合曲线,但这样会导致曲线函数非常复杂。
针对以上问题,在拟合问题中,不需要曲线一定经过给定的点。拟合问题的目标是寻求一个函数(曲线),而该函数尽可能设置得较为简单,使得该曲线在某种准则下与所有的数据点最为接近,即只要保证误差足够小即可,(最小化损失函数),这就是拟合是思想。
确定拟合曲线
给定一组数据[x,y],找出y和x之间的拟合曲线

在matlab上通过画图得出这组数据对应的图像
plot(x,y,'o');

拟合一个曲线去接近样本点,这里我用一个简单的拟合曲线y=kx+b。现在的问题是,k和b取何值时,样本点和拟合曲线最接近。
最小二乘法的几何解释

- 第一种定义有绝对值,后续不容易求导,因此计算较复杂。所以我们往往使用第二种定义,这正是最小二乘法的思想
- 我们也不使用三次方,因为三次方计算样本点到拟合曲线的距离会出现负数,那么该距离就会正负抵消
- 我们也不使用四次方,使用4次方时,若出现某个异常值离曲线较远,那么该拟合曲线受到的影响较大

求解最小二乘法

最终落脚到的两个公式:k</sup>和b<sup>推导公式
- 该公式通过对k和b一介求导,然后分离系数所得
matlab求解最小二乘法

根据公式不难得出代码
plot(x,y,'o');
xlabel("x");
ylabel("y");
n=size(x,1);%% 数据的个数
k=(n*sum(x.*y)-sum(x)*sum(y))/(n*sum(x.*x)-sum(x)*sum(x));
b=(sum(x.*x)*sum(y)-sum(x)*sum(x.*y))/(n*sum(x.*x)-sum(x)*sum(x));
hold on;%% 写上这句后续可以继续在之前的图形上画图形
grid on;%% 图形显示网格线
f=@(x) k*x+b; %% f=kx+b是匿名函数,该函数图形不需要另外传参数也能形成图形
fplot(f,[2.5,7]);
legend('样本数据','拟合函数','location','southeast');
- f函数是匿名函数,该函数图形不需要另外传参数也能形成图形。在matlab中画出图形需要传参。比如正常情况下f函数需要传参x否则不能画出图形,而匿名函数系统会根据需求自己给出一定范围的参数以得画出图形
匿名函数的基本用法
handle = @(arglist) anonymous_function
-
其中handle为调用匿名函数时使用的名字。
-
arglist为匿名函数的输入参数,可以是一个,也可以是多个,用逗号分隔。
-
anonymous_function为匿名函数的表达式。
-
注意输入参数和表达式之间要用空格
- fplot可用于画出匿名一元函数的图形
基本用法
fplot(f,xinterval)
- 将匿名函数f在指定区间xinterval绘图。xinterval = [xmin xmax] 表示定义域的范围

如何评价拟合的好坏

- 根据SST、SSE、SSR可以证明:
- SST=SSE+SSR
- 拟合优度:0<=1-SSE/SST<=1;而SSE误差平方和越小,拟合优度R2越接近1。误差越小说明拟合的越好
- 注意:拟合优度R2只能用于拟合函数是线性函数,若拟合函数是其他函数,直接看误差平方和即可,SSE越小,说明拟合度越好
- 线性函数是指在函数中,参数仅以一次方出现,且不能乘以或除以其他任何的参数,并不能出现参数的复合函数形式。该参数不是指自变量x。比如y=kx+b,该参数指的是区别于自变量x和因变量y以外的参数k和b。

计算拟合优度的代码
plot(x,y,'o');
xlabel("x");
ylabel("y");
n=size(x,1);%% 数据的个数
k=(n*sum(x.*y)-sum(x)*sum(y))/(n*sum(x.*x)-sum(x)*sum(x));
b=(sum(x.*x)*sum(y)-sum(x)*sum(x.*y))/(n*sum(x.*x)-sum(x)*sum(x));
hold on;%% 写上这句后续可以继续在之前的图形上画图形
grid on;%% 图形显示网格线
f=@(x) k*x+b; %% f=kx+b是匿名函数,该函数图形不需要另外传参数也能形成图形
fplot(f,[2.5,7]);
legend('样本数据','拟合函数','location','southeast');
y_hat=k*x+b;
SSR=sum((y_hat-mean(y)).^2); % 回归平方和
SSE=sum((y-y_hat).^2); % 误差平方和
SST=sum((y-mean(y)).^2); % 总体平方和
disp(SST-SSE-SSR);
R_2=SSR/SST; % 拟合优度
disp(R_2);

-
SST-SSE-SSR的结果不为0的原因是在matlab中浮点数做运算一定程度上结果不精准,但结果是5.6843^-14结果是非常小的即非常接近0
[外链图片转存中…(img-WkmLP3WM-1692188156893)] -
SST-SSE-SSR的结果不为0的原因是在matlab中浮点数做运算一定程度上结果不精准,但结果是5.6843^-14结果是非常小的即非常接近0
-
拟合度为0.9635非常接近1了,说明该拟合函数的拟合度较好
相关文章:
清风数学建模——拟合算法
拟合算法 文章目录 拟合算法概念 确定拟合曲线最小二乘法的几何解释求解最小二乘法matlab求解最小二乘法如何评价拟合的好坏计算拟合优度的代码 概念 在前面的篇幅中提到可以使用插值算法,通过给定的样本点推算出一定的曲线从而推算出一些想要的值。但存在一些问题…...
单片机 (一) 让LED灯 亮
一:硬件电路图 二:软件代码 #include "reg52.h"#define LED_PORT P2void main() {LED_PORT 0x01; // 0000 0001 D1 是灭的 } #include "reg52.h" 这个头文件的作用:包含52 系列单片机内部所有的功能寄存器 三&#…...
c++——单例模式
c单例模式 1、概念: 单例模式确保一个类只有一个实例,并提供一个全局访问点以获取该实例。这通常通过让类的构造函数为私有,以防止外部直接实例化,然后提供一个静态方法来获取实例。 2、实现方法: 实现单例模式的主…...
C# 流Stream详解(2)——FileStream、BinaryReader、MemorySream、SreamReader等之间的关系
【文件流】 电脑上的文件有很多,文本文件、音频文件、视频文件、图片文件等,这些文件会被持久化存储在磁盘上,其本质都是一堆二进制数据。 FileStream用于读取二进制文件。电脑上的所有文件,不管是文本、音频、视频还是其他任意…...
【JavaSE】详解final关键字
在Java中,final可以用来修饰类、方法和变量。final修饰类,表示该类无法被继承,并且此类的设计已被认为很完美而不需要进行修改或扩展。final修饰类中的方法,表示不可以被重写;也就是把该方法锁定了,以防止继…...
问道管理:机器人概念走势活跃,新时达涨停,拓斯达、丰立智能等大涨
机器人概念17日盘中走势活跃,到发稿,拓斯达大涨18%,昊志机电涨近16%,丰立智能涨超13%,步科股份、优德精细涨超10%,新时达涨停,天玑科技、兆龙互联、中大力德涨逾9%。 消息面上,8月16…...
elementui 修改日期选择器el-date-picker样式
1. 案例: 2. css /* 最外层颜色 */ .el-popper.is-pure {background: url("/assets/imgList/memuBG.png") no-repeat;border: none;background-size:100% 100%}/* 日期 1.背景透明 */ .el-date-picker{background: transparent; }/* 日期 2.标题、左右图…...
自己实现 SpringMVC 底层机制 系列之-实现任务阶段 6-完成控制器方法获取参数-@RequestParam
😀前言 自己实现 SpringMVC 底层机制 系列之-实现任务阶段 6-完成控制器方法获取参数-RequestParam 🏠个人主页:尘觉主页 🧑个人简介:大家好,我是尘觉,希望我的文章可以帮助到大家,…...
数据可视化:图表绘制详解
数据可视化是一种将抽象的数字和数据转化为直观图形的技术,使数据的模式、趋势和关系一目了然。本文将详细介绍如何绘制各种类型的图表,包括柱状图、折线图、饼图、散点图和热力图等。 第一部分:图表类型和选择 1. 柱状图 柱状图是用于比较类…...
【中危】Apache Ivy<2.5.2 存在XXE漏洞 (CVE-2022-46751)
漏洞描述 Apache Ivy 是一个管理基于 ANT 项目依赖关系的开源工具,文档类型定义(DTD)是一种文档类型定义语言,它用于定义XML文档中所包含的元素以及元素之间的关系。 Apache Ivy 2.5.2之前版本中,当解析自身配置、Ivy 文件或 Apache Maven 的 POM 文件…...
C#使用自定义的比较器对版本号(编码)字符串进行排序
给定一些数据,如下所示: “1.10.1.1.1.2”, “1.1”, “2.2”, “1.1.1.1”, “1.1.3.1”, “1.1.1”, “2.10.1.1.1”, “1.1.2.1”, “1.2.1.1”, “2.5.1.1”, “1.10.1.1”, “1.10.2.1”, “1.11.3.1”, “1.11.12.1”, “1.11.11.1”, “1.11.3.1”, “1”, “…...
AI在日常生活中的应用:从语音助手到自动驾驶
文章目录 AI的定义和发展AI在日常生活中的应用1. **智能语音助手**2. **智能家居**3. **智能医疗**4. **自动驾驶** 代码示例:使用Python实现基于机器学习的图片分类AI的未来前景结论 🎉欢迎来到AIGC人工智能专栏~探索AI在日常生活中的应用 ☆* o(≧▽≦…...
Windows10查看图片的分辨率
文章目录 查看方法 查看方法 鼠标悬停在想查看分辨率大小的图片上,稍等那么零点几秒,就会弹出图片的分辨率信息,如图所示:...
Spring事务和事务传播机制(2)
前言🍭 ❤️❤️❤️SSM专栏更新中,各位大佬觉得写得不错,支持一下,感谢了!❤️❤️❤️ Spring Spring MVC MyBatis_冷兮雪的博客-CSDN博客 在Spring框架中,事务管理是一种用于维护数据库操作的一致性和…...
计算机视觉 -- 图像分割
文章目录 1. 图像分割2. FCN2.1 语义分割– FCN (Fully Convolutional Networks)2.2 FCN--deconv2.3 Unpool2.4 拓展–DeconvNet 3. 实例分割3.1 实例分割--Mask R-CNN3.2 Mask R-CNN3.3 Faster R-CNN与 Mask R-CNN3.4 Mask R-CNN:Resnet1013…...
ubuntu18.04复现yolo v8之CUDA与pytorch版本问题以及多CUDA版本安装及切换
最近在复现yolo v8的程序,特记录一下过程 环境:ubuntu18.04ros melodic 小知识:GPU并行计算能力高于CPU—B站UP主说的 Ubuntu可以安装多个版本的CUDA。如果某个程序的Pyorch需要不同版本的CUDA,不必删除之前的CUDA,…...
Redis三种模式——主从复制,哨兵模式,集群
目录 一、主从复制 1.1主从复制的概念 1.2Redis主从复制作用 1.2.1数据冗余 1.2.2故障恢复 1.2.3负载均衡 1.2.4高可用基石 1.3Redis主从复制流程 1.4部署Redis 主从复制 1.4.1.环境部署 1.4.2.所有服务器都先关闭防火墙 1.4.3.所有服务器都安装Redis 1.4.4修改Master主节点R…...
mysql8.0.31新增只读远程普通用户
在 MySQL 8.0.31 中,可以通过以下步骤新增只读远程普通用户: 1、使用 root 用户登录 MySQL 数据库。 mysql -u root -p 2、创建用户: CREATE USER username% IDENTIFIED WITH mysql_native_password BY password ; 其中,username…...
揭开路由协议隐藏的风险
路由协议在互联网和基于其的服务的运行中发挥着至关重要的作用。然而,许多这些协议的开发都没有考虑到安全问题。 例如,边界网关协议 (BGP) 最初并未考虑对等点之间发生攻击的可能性。过去几十年来,BGP 中的起源和路径验证已投入了大量工作。…...
图片因固定宽高被拉伸了?object-fit:一个神奇的属性
一、问题产生的场景 近期在完成项目开发时,测试人员针对漫画长图上传后的展示提出了一个界面优化的点,因为其特点是长,但是我们展示图片的区域是固定的,如果我们按照正常思路将图片的宽高写死,确实占位大小的问题解决了…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
elementUI点击浏览table所选行数据查看文档
项目场景: table按照要求特定的数据变成按钮可以点击 解决方案: <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...
《Docker》架构
文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器,docker,镜像,k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...
OCR MLLM Evaluation
为什么需要评测体系?——背景与矛盾 能干的事: 看清楚发票、身份证上的字(准确率>90%),速度飞快(眨眼间完成)。干不了的事: 碰到复杂表格(合并单元…...
Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解
文章目录 一、开启慢查询日志,定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...
flow_controllers
关键点: 流控制器类型: 同步(Sync):发布操作会阻塞,直到数据被确认发送。异步(Async):发布操作非阻塞,数据发送由后台线程处理。纯同步(PureSync…...
写一个shell脚本,把局域网内,把能ping通的IP和不能ping通的IP分类,并保存到两个文本文件里
写一个shell脚本,把局域网内,把能ping通的IP和不能ping通的IP分类,并保存到两个文本文件里 脚本1 #!/bin/bash #定义变量 ip10.1.1 #循环去ping主机的IP for ((i1;i<10;i)) doping -c1 $ip.$i &>/dev/null[ $? -eq 0 ] &&am…...
