当前位置: 首页 > news >正文

Pytorch-day05-可视化-checkpoint

PyTorch 可视化

  • 1、模型结构可视化
  • 2、训练过程可视化
  • 3、模型评估可视化
#导入常用包
import os 
import numpy as np 
import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import transforms
import torchvision
import torch.nn.functional as F
# 自定义model
class DemoModel(nn.Module):def __init__(self):super(DemoModel, self).__init__()self.conv1 = nn.Conv2d(3, 6, 5)self.pool = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(6, 16, 5)self.fc1 = nn.Linear(16 * 5 * 5, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = self.pool(F.relu(self.conv2(x)))x = x.view(-1, 16 * 5 * 5)x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return x

方法一 print 打印(模型结构可视化)

model = DemoModel()
#方法一:print打印(模型结构可视化)
print(model)
DemoModel((conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))(fc1): Linear(in_features=400, out_features=120, bias=True)(fc2): Linear(in_features=120, out_features=84, bias=True)(fc3): Linear(in_features=84, out_features=10, bias=True)
)

方法二 torchinfo

常用来查看模型输入输出和模型参数大小

torchinfo

#pip3 install torchinfo

  • trochinfo的使用也是十分简单,我们只需要使用torchinfo.summary()就行了,必需的参数分别是model,input_size[batch_size,channel,h,w]
  • 提供了模块信息(每一层的类型、输出shape和参数量)、模型整体的参数量、模型大小、一次前向或者反向传播需要的内存大小等
from torchinfo import summary
model = DemoModel() # 实例化模型
#方法二:torchinfo 查看 模型结构可视化
summary(model, (1, 3, 32, 32)) # 1:batch_size 3:图片的通道数 1024: 图片的高宽
==========================================================================================
Layer (type:depth-idx)                   Output Shape              Param #
==========================================================================================
DemoModel                                [1, 10]                   --
├─Conv2d: 1-1                            [1, 6, 28, 28]            456
├─MaxPool2d: 1-2                         [1, 6, 14, 14]            --
├─Conv2d: 1-3                            [1, 16, 10, 10]           2,416
├─MaxPool2d: 1-4                         [1, 16, 5, 5]             --
├─Linear: 1-5                            [1, 120]                  48,120
├─Linear: 1-6                            [1, 84]                   10,164
├─Linear: 1-7                            [1, 10]                   850
==========================================================================================
Total params: 62,006
Trainable params: 62,006
Non-trainable params: 0
Total mult-adds (M): 0.66
==========================================================================================
Input size (MB): 0.01
Forward/backward pass size (MB): 0.05
Params size (MB): 0.25
Estimated Total Size (MB): 0.31
==========================================================================================

方法三 Tensorboard (使用最多,可实现训练过程的可视化)

TensorBoard

  • TensorBoard作为一款可视化工具能够满足 输入数据(尤其是图片)、模型结构、参数分布、debug的需求
  • TensorBoard可以记录我们指定的数据,包括模型每一层的feature map,权重,以及训练loss等等
  • 利用TensorBoard实现训练过程可视化

安装

pip install tensorboard

启动tensorboard

tensorboard --logdir=/path/to/logs/ --port=xxxx

  • 其中“path/to/logs/“是指定的保存tensorboard记录结果的文件路径,等价于下面的“./runs”
  • port是外部访问TensorBoard的端口号,可以通过访问ip:port访问tensorboard)

重点:

tensorboard --logdir=path1 与 writer = SummaryWriter(path1), 两者的目录路径要保持一致,否则tensorboard 上不能显示结果。
writer 与writer.add_graph()

# from tensorboard import SummaryWriter
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter('./runs')
print(model)
DemoModel((conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))(fc1): Linear(in_features=400, out_features=120, bias=True)(fc2): Linear(in_features=120, out_features=84, bias=True)(fc3): Linear(in_features=84, out_features=10, bias=True)
)
#方法三:tensorboard查看
writer.add_graph(model,torch.rand(1, 3, 32, 32))
writer.close()

tensorboard 可视图

#超参数定义
# 批次的大小
batch_size = 16 #可选32、64、128
# 优化器的学习率
lr = 1e-4
#运行epoch
max_epochs = 2
# 方案一:指定GPU的方式
# os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' # 指明调用的GPU为0,1号# 方案二:使用“device”,后续对要使用GPU的变量用.to(device)即可
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 指明调用的GPU为1号# 数据读取
#cifar10数据集为例给出构建Dataset类的方式
from torchvision import datasets#“data_transform”可以对图像进行一定的变换,如翻转、裁剪、归一化等操作,可自己定义
data_transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])train_cifar_dataset = datasets.CIFAR10('cifar10',train=True, download=False,transform=data_transform)
test_cifar_dataset = datasets.CIFAR10('cifar10',train=False, download=False,transform=data_transform)#构建好Dataset后,就可以使用DataLoader来按批次读入数据了train_loader = torch.utils.data.DataLoader(train_cifar_dataset, batch_size=batch_size, num_workers=4, shuffle=True, drop_last=True)test_loader = torch.utils.data.DataLoader(test_cifar_dataset, batch_size=batch_size, num_workers=4, shuffle=False)
#训练&验证
writer = SummaryWriter('./runs')# Set fixed random number seed
torch.manual_seed(42)
# 定义损失函数和优化器
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
My_model = DemoModel()
My_model = My_model.to(device)
# 交叉熵
criterion = torch.nn.CrossEntropyLoss()
# 优化器
optimizer = torch.optim.Adam(My_model.parameters(), lr=lr)
epoch = max_epochstotal_step = len(train_loader)
train_all_loss = []
test_all_loss = []
for i in range(epoch):My_model.train()train_total_loss = 0train_total_num = 0train_total_correct = 0for iter, (images,labels) in enumerate(train_loader):images = images.to(device)labels = labels.to(device)# Write the network graph at epoch 0, batch 0if epoch == 0 and iter == 0:writer.add_graph(My_model, input_to_model=(images,labels)[0], verbose=True)# Write an image at every batch 0if iter == 0:writer.add_image("Example input", images[0], global_step=epoch)outputs = My_model(images)loss = criterion(outputs,labels)train_total_correct += (outputs.argmax(1) == labels).sum().item()#backwordoptimizer.zero_grad()loss.backward()optimizer.step()train_total_num += labels.shape[0]train_total_loss += loss.item()# Print statisticswriter.add_scalar("Loss/Minibatches", train_total_loss, train_total_num)print("Epoch [{}/{}], Iter [{}/{}], train_loss:{:4f}".format(i+1,epoch,iter+1,total_step,loss.item()/labels.shape[0]))# Write loss for epochwriter.add_scalar("Loss/Epochs", train_total_loss, epoch)My_model.eval()test_total_loss = 0test_total_correct = 0test_total_num = 0for iter,(images,labels) in enumerate(test_loader):images = images.to(device)labels = labels.to(device)outputs = My_model(images)loss = criterion(outputs,labels)test_total_correct += (outputs.argmax(1) == labels).sum().item()test_total_loss += loss.item()test_total_num += labels.shape[0]print("Epoch [{}/{}], train_loss:{:.4f}, train_acc:{:.4f}%, test_loss:{:.4f}, test_acc:{:.4f}%".format(i+1, epoch, train_total_loss / train_total_num, train_total_correct / train_total_num * 100, test_total_loss / test_total_num, test_total_correct / test_total_num * 100))train_all_loss.append(np.round(train_total_loss / train_total_num,4))test_all_loss.append(np.round(test_total_loss / test_total_num,4))
Epoch [1/2], Iter [1/3125], train_loss:0.144669Epoch [1/2], Iter [710/3125], train_loss:0.119339Epoch [1/2], Iter [1254/3125], train_loss:0.121789

比较

  1. 方法一 print(model),打印模型块得结构
  2. 方法二 torchinfo , 给一个输入大小, 提供模块信息更全,包含每一层的类型、输出shape 和参数量等。 (torchsummary 也有同样功能)
    https://blog.csdn.net/weixin_43183872/article/details/108329776
  3. 方法三 tensorboard ,TensorBoard可以记录我们指定的数据,包括模型每一层的feature map,权重,以及训练loss等等
    tensorboard 使用时,

tensorboard --logdir=path1 与 writer = SummaryWriter(path1), 两者的目录路径要保持一致,否则tensorboard 上不能显示结果。
writer 与writer.add_graph()

相关文章:

Pytorch-day05-可视化-checkpoint

PyTorch 可视化 1、模型结构可视化2、训练过程可视化3、模型评估可视化 #导入常用包 import os import numpy as np import torch from torch import nn from torch.utils.data import Dataset, DataLoader from torchvision.transforms import transforms import torchvis…...

实训笔记8.23

8.23笔记 8.23笔记一、Hive中函数1.1 Hive中内置函数1.1.1 数学函数1.1.2 字符串函数1.1.3 日期函数1.1.4 条件函数1.1.5 特殊函数 1.2 Hive的自定义函数1.2.1 自定义UDF1.2.2 自定义UDTF 二、Hive的压缩机制三、数据同步工具Sqoop的安装和使用3.1 sqoop的概念3.2 sqoop的核心功…...

2023年菏泽市中职学校技能大赛“网络安全”赛项规程

2023年菏泽市中职学校技能大赛 “网络安全”赛项规程 一、赛项名称 赛项名称:网络安全 赛项所属专业大类:信息技术类 二、竞赛目的 通过竞赛,检验参赛选手对网络、服务器系统等网络空间中各个信息系统的安全防护能力,以及分析…...

Android 13 - Media框架(6)- NuPlayer

上一节我们通过 NuPlayerDriver 了解了 NuPlayer 的使用方式,这一节我们一起来学习 NuPlayer 的部分实现细节。 ps:之前用 NuPlayer 播放本地视频很多都无法播放,所以觉得它不太行,这两天重新阅读发现它的功能其实很全面&#xff…...

机器学习|DBSCAN 算法的数学原理及代码解析

机器学习|DBSCAN 算法的数学原理及代码解析 引言 聚类是机器学习领域中一项重要的任务,它可以将数据集中相似的样本归为一类。DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种是一种经典的密度聚类…...

用NUXT.JS,轻松搞定SEO!

nuxt.js 是什么? 如果你正在准备开发一个SEO友好的新项目,而且准备用 vue 开发,那么恭喜你,用 nuxt 是一个成本和效率都比较优秀的方案。 官方文档 知识中心案例 简单介绍下背景,这是一个专门为氚云低代码平台引流…...

什么是电商RPA?电商RPA能解决什么问题?电商RPA实施难点在哪里?

RPA机器人可以应用于各个行业和领域,例如金融、保险、制造、物流、电商等。它可以减少人工错误和重复工作,提高效率和生产力。RPA还可以在处理大量数据时加快处理速度,提供更准确和可靠的结果。此外,RPA还可以为员工提供更有价值的…...

【BUG】Docker启动MySQL报错

个人主页:金鳞踏雨 个人简介:大家好,我是金鳞,一个初出茅庐的Java小白 目前状况:22届普通本科毕业生,几经波折了,现在任职于一家国内大型知名日化公司,从事Java开发工作 我的博客&am…...

Spring Boot通过企业邮箱发件被Gmail退回的解决方法

这两天给我们开发的Chrome插件:Youtube中文配音 增加了账户注册和登录功能,其中有一步是邮箱验证,所以这边会在Spring Boot后台给用户的邮箱发个验证信息。如何发邮件在之前的文章教程里就有,这里就不说了,着重说说这两…...

Windows使用MobaXterm远程访问ubuntu20.04桌面

参考ubuntu 2020.4 安装vnc 一、脚本文件 remote_setup.sh脚本文件内容: #! /bin/bash #参考链接:https://blog.csdn.net/hailangdeyingzi/article/details/124507304 sudo apt update sudo apt install x11vnc -y sudo x11vnc -storepasswd telpo.12…...

C++注释风格

1. 文件头注释 每个文件都应该开始于一个注释块,描述文件的目的、作者、创建日期和版权信息。 /** FileName: MyClass.cpp* Purpose: Provides functionality for XYZ operations.* Author: [Your Name]* Creation Date: YYYY-MM-DD* Last Updated: YYYY-MM-DD* C…...

Linux 编译内核模块出现--Unknown symbol mcount

文章目录 Linux suse: # cat /etc/os-release NAME"SLES" VERSION"12-SP2" VERSION_ID"12.2" PRETTY_NAME"SUSE Linux Enterprise Server 12 SP2" ID"sles" ANSI_COLOR"0;32" CPE_NAME"cpe:/o:s…...

Pywin32 Cookbook by Eric

Writing Prompt 现在你是一名专业的Python工程师,请你根据"Pywin32_Funtion"函数的功能,为其编写一个清晰的文档说明Functions win32gui.GetWindowDC(hwnd) 描述 win32gui.GetWindowDC()函数用于获取指定窗口的设备上下文(Devi…...

indexDB入门到精通

前言 由于开发3D可视化项目经常用到模型,而一个模型通常是几m甚至是几十m的大小对于一般的服务器来讲加载速度真的十分的慢,为了解决这个加载速度的问题,我想到了几个本地存储的。 首先是cookie,cookie肯定是不行的,因为最多以只…...

Ubuntu 20.04配置静态ip

ip配置文件 cd /etc/netplan配置 根据需求增加 # Let NetworkManager manage all devices on this system network:version: 2renderer: NetworkManager # 管理 不是必须ethernets:enp4s0: #网卡名dhcp4: no #关闭ipv4动态分配ip地址dhcp6: no #关闭ipv6动态分配…...

Tushare入门小册

Tushare入门小册 一、Tushare平台介绍 Pro版数据更稳定质量更好了,我们提供的不再是直接从互联网抓取,而是通过社区的采集和整理存入数据库经过质量控制后再提供给用户。但Pro依然是个开放的,免费的平台,不带任何商业性质和目的…...

<c++开发>通信工具 -之-SOME/IP移植部署 第一篇文章

<c开发>通信工具 -之-SOME/IP移植ubuntu部署 第一篇文章 一 前言 SOME/IP (Scalable service-Oriented MiddlewarE over IP) 是一种通信协议,主要用于嵌入式系统和车载网络中的服务导向通信。SOME/IP是AUTOSAR(AUTomotive Open …...

权威的软件测试服务供应商分享,怎么获得软件安全检测报告?

我们深知在如今的数字化时代,软件安全对于企业和个人来说具有极其重要的意义。然而,许多用户对于软件安全测试报告的概念还不够清晰,也不知道如何获得这样的报告。在本文中,小编将为您简析什么是安全测试报告以及如何获取这样的报…...

管理类联考——逻辑——真题篇——按知识分类——汇总篇——二、论证逻辑——假设——第二节——搭桥假设

文章目录 第二节 假设-分类1-搭桥假设-当题干推理存在明显断点,常见形式比如:“因为A→B,C→D,所以A→D”,则正确选项为“B→C”真题(2014-39)-假设-分类1-题干推理存在明显断点-搭桥假设-建模搭桥-“因为A→B,所以A→C”,搭桥假设为“B→C”真题(2019-44)-假设-分…...

百度云BOS云存储的图片如何在访问时,同时进行格式转换、缩放等处理

前言 之前做了一个图片格式转换和压缩的服务,结果太占内存。后来查到在访问图片链接时,支持进行图片压缩和格式转换,本来想着先格式转换、压缩图片再上传到BOS,现在变成了上传后,访问时进行压缩和格式转换。想了想&am…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础

第三周 Day 3 🎯 今日目标 理解类(class)和对象(object)的关系学会定义类的属性、方法和构造函数(init)掌握对象的创建与使用初识封装、继承和多态的基本概念(预告) &a…...

​​企业大模型服务合规指南:深度解析备案与登记制度​​

伴随AI技术的爆炸式发展,尤其是大模型(LLM)在各行各业的深度应用和整合,企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者,还是积极拥抱AI转型的传统企业,在面向公众…...

Tauri2学习笔记

教程地址:https://www.bilibili.com/video/BV1Ca411N7mF?spm_id_from333.788.player.switch&vd_source707ec8983cc32e6e065d5496a7f79ee6 官方指引:https://tauri.app/zh-cn/start/ 目前Tauri2的教程视频不多,我按照Tauri1的教程来学习&…...

CVE-2023-25194源码分析与漏洞复现(Kafka JNDI注入)

漏洞概述 漏洞名称:Apache Kafka Connect JNDI注入导致的远程代码执行漏洞 CVE编号:CVE-2023-25194 CVSS评分:8.8 影响版本:Apache Kafka 2.3.0 - 3.3.2 修复版本:≥ 3.4.0 漏洞类型:反序列化导致的远程代…...

云原生时代的系统设计:架构转型的战略支点

📝个人主页🌹:一ge科研小菜鸡-CSDN博客 🌹🌹期待您的关注 🌹🌹 一、云原生的崛起:技术趋势与现实需求的交汇 随着企业业务的互联网化、全球化、智能化持续加深,传统的 I…...

C/Python/Go示例 | Socket Programing与RPC

Socket Programming介绍 Computer networking这个领域围绕着两台电脑或者同一台电脑内的不同进程之间的数据传输和信息交流,会涉及到许多有意思的话题,诸如怎么确保对方能收到信息,怎么应对数据丢失、被污染或者顺序混乱,怎么提高…...