当前位置: 首页 > news >正文

GAN(生成对抗网络)

简介:GAN生成对抗网络本质上是一种思想,其依靠神经网络能够拟合任意函数的能力,设计了一种架构来实现数据的生成。

原理:GAN的原理就是最小化生成器Generator的损失,但是在最小化损失的过程中加入了一个约束,这个约束就是使Generator生成的数据满足我们指定数据的分布,GAN的巧妙之处在于使用一个神经网络(鉴别器Discriminator)来自动判断生成的数据是否符合我们所需要的分布。

实现细节:

一:

        准备好我们想要让生成器生成的数据类型,比如MINIST手写数字集,包含1-10十个数字,一共60000张图片。生成器的目的就是学习这个数据集的分布。

二,

        定义一个生成器,用于判别一张图片是实际的还是生成器生成的,当生成器完美学习得到数据分布之后,鉴别器可能就分不清图片是生成器的还是实际的,这样的话生成器就能生成我们想要的图片了。

        生成器的训练过程为:实际数据输出结果1,生成数据输出结果为0,目的是学会区分真假数据,相当于提供一个约束,使生成数据符合指定分布。当鉴别生成器的数据分布时,只需要更新鉴别器的参数权重,不能够通过计算图将生成器的参数进行更新。

三,

        定义一个生成器,给定一个输入,他就能生成1-10里面的一个数字的图片。生成器的反向更新是根据鉴别器的损失来确定(被约束进行反向更新)。生成器的网络权重参数是单独的,反向更新时,只需要更新计算图当中属于生成器部分的参数。

下面给出生成1-0-1-0数据格式的代码:

# %%
import torch
import numpy
import torch.nn as nn
import matplotlib.pyplot as plt# %%
def gennerate1010():return torch.FloatTensor([numpy.random.uniform(0.9,1.1),numpy.random.uniform(0.,.1),numpy.random.uniform(0.9,1.1),numpy.random.uniform(0.0,.1)])# %%
def genneratexxxx():return torch.rand(4)# %%
class Discrimer(nn.Module):def __init__(self) -> None:father_obj = super(Discrimer,self)father_obj.__init__()self.create_model()self.counter = 0self.progress = []def create_model(self):self.model = nn.Sequential(nn.Linear(4,3),nn.Sigmoid(),nn.Linear(3,1),nn.Sigmoid(),           )self.loss_functon = nn.MSELoss()self.optimiser = torch.optim.SGD(self.parameters(),lr=0.01)def forward(self,x):return self.model(x)def train(self,x,targets):outputs = self.forward(x)loss = self.loss_functon(outputs,targets)self.counter += 1if self.counter%10 == 0:self.progress.append(loss.item())if self.counter%10000 == 0:print(self.counter)self.optimiser.zero_grad()loss.backward()self.optimiser.step()def plotprogress(self):plt.plot(self.progress,marker='*')plt.show()# %%
class Gennerater(nn.Module):def __init__(self) -> None:father_obj = super(Gennerater,self)father_obj.__init__()self.create_model()self.counter = 0self.progress = []def create_model(self):self.model = nn.Sequential(nn.Linear(1,3),nn.Sigmoid(),nn.Linear(3,4),nn.Sigmoid(),           )# 这个优化器只能优化生成器部分的参数self.optimiser = torch.optim.SGD(self.parameters(),lr=0.01)def forward(self,x):return self.model(x)def train(self,D,x,targets):g_outputs = self.forward(x)d_outputs = D.forward(g_outputs)# 使用鉴别器的loss函数,但是只更新生成器的参数,生成器的参数需要根据鉴别器的约束进行更新loss = D.loss_functon(d_outputs,targets)self.counter += 1if self.counter%10 == 0:self.progress.append(loss.item())if self.counter%10000 == 0:print(self.counter)self.optimiser.zero_grad()loss.backward()self.optimiser.step()def plotprogress(self):plt.plot(self.progress,marker='*')plt.show()# %%
D = Discrimer()# %%
G = Gennerater()# %%
for id in range(15000):# 喂入实际数据给鉴别器D.train(gennerate1010(),torch.FloatTensor([1.]))# 喂入生成的数据,使用detach从计算图脱离,用于更新鉴别器,而生成器得不到更新D.train(G.forward(torch.FloatTensor([0.5]).detach()),torch.FloatTensor([0.0]))G.train(D,torch.FloatTensor([0.5]),torch.FloatTensor([1.]))# %%
D.plotprogress()# %%
G.plotprogress()# %%
G.forward(torch.FloatTensor([0.5]))

参考:PyTorch生成对抗网络编程

相关文章:

GAN(生成对抗网络)

简介:GAN生成对抗网络本质上是一种思想,其依靠神经网络能够拟合任意函数的能力,设计了一种架构来实现数据的生成。 原理:GAN的原理就是最小化生成器Generator的损失,但是在最小化损失的过程中加入了一个约束&#xff0…...

实时同步ES技术选型:Mysql+Canal+Adapter+ES+Kibana

基于之前的文章,精简操作而来 让ELK在同一个docker网络下通过名字直接访问Ubuntu服务器ELK部署与实践使用 Docker 部署 canal 服务实现MySQL和ES实时同步Docker部署ES服务,canal全量同步的时候内存爆炸,ES/Canal Adapter自动关闭&#xff0c…...

禅道后台命令执行漏洞

漏洞简介 禅道是第一款国产的开源项目管理软件。它集产品管理、项目管理、质量管理、文档管理、 组织管理和事务管理于一体,是一款专业的研发项目管理软件,完整地覆盖了项目管理的核心流程。 禅道管理思想注重实效,功能完备丰富,…...

基于Spark+django的国漫推荐系统--计算机毕业设计项目

近年来,随着互联网的蓬勃发展,企事业单位对信息的管理提出了更高的要求。以传统的管理方式已无法满足现代人们的需求。为了迎合时代需求,优化管理效率,各种各样的管理系统应运而生,随着各行业的不断发展,基…...

向量数据库 Milvus:实现高效向量搜索的技术解析

引言 随着人工智能、机器学习和深度学习技术的不断发展,越来越多的应用开始使用向量表示数据。向量数据具有高维、稀疏和相似性等特点,传统的关系型数据库和键值存储在处理这类数据时面临许多挑战。为了满足大规模、高并发的向量搜索需求,出现…...

恒运资本:信创概念再度活跃,华是科技再创新高,南天信息等涨停

信创概念21日盘中再度活跃,截至发稿,华是科技涨超17%,盘中一度触及涨停再创新高,中亦科技涨超13%亦创出新高,久其软件、南天信息、新炬网络、英飞拓均涨停。 音讯面上,自8月3日以来,财政部官网连…...

Synchronized锁升级

Java Synchronized 重量级锁原理深入剖析上(互斥篇) 为什么映入Monitor 处在重量级锁状态时说明有线程没拿到锁需要阻塞等待锁,当拥有锁的线程释放锁后唤醒它继续竞争锁。此处就引入了一个问题:其它线程如何找到被阻塞的线程?我们很容易想到…...

记一个宏定义写法

记一个宏定义写法 最近在看libevent源码,看到一个有趣的宏写法。特此记录。方便日后巩固学习。 源码写法: #define HT_FIND(name, head, elm) name##_HT_FIND((head), (elm))首先来简单分析一下: 定睛一看是一个宏,##是连接符…...

【数据结构】C语言实现栈(详细解读)

前言: 💥🎈个人主页:​​​​​​Dream_Chaser~ 🎈💥 ✨✨专栏:http://t.csdn.cn/oXkBa ⛳⛳本篇内容:c语言数据结构--C语言实现栈 目录 什么是栈 栈的概念及结构 实现栈的方式 链表的优缺点: 顺序表的优缺点: 栈…...

3、Spring_容器执行

容器执行点 1.整合 druid 连接池 添加依赖 <dependency><groupId>com.alibaba</groupId><artifactId>druid</artifactId><version>1.2.8</version> </dependency>1.硬编码方式整合 新建德鲁伊配置 <?xml version"1.…...

五、pikachu之RCE

文章目录 1、RCE概述2、exec "ping"3、exec"evel"4、连接符 1、RCE概述 RCE&#xff08;emote command/code execute&#xff09;&#xff1a;可以让攻击者直接向后台服务器远程注入操作系统命令或者代码&#xff0c;从而控制后台系统。 远程系统命令执行 …...

最大不相交区间数量

给定 N 个闭区间 [ai,bi]&#xff0c;请你在数轴上选择若干区间&#xff0c;使得选中的区间之间互不相交&#xff08;包括端点&#xff09;。 输出可选取区间的最大数量。 输入格式 第一行包含整数 N&#xff0c;表示区间数。 接下来 N 行&#xff0c;每行包含两个整数 ai,…...

Oracle给表空间添加容量

假如给SYSTEM表空间添加 查看文件位置和容量&#xff1a;Select * FROM DBA_DATA_FILES; FILE_NAME就是要修改的文件 查看每一个表空间的容量&#xff0c;单位MB&#xff1a; SELECT t.tablespace_name, round(SUM(bytes / (1024 * 1024)), 0) ts_size FROM dba_tablespaces…...

2023年大数据与区块链国际会议 | EI、Scoups检索

会议简介 Brief Introduction 2023年大数据与区块链国际会议&#xff08;ICBDB 2023&#xff09; 会议时间&#xff1a;2023年11月17 -19日 召开地点&#xff1a;中国西安 大会官网&#xff1a;www.icobdb.org 2023年大数据与区块链国际会议&#xff08;ICBDB 2023&#xff09;…...

【洛谷算法题】P1000-超级玛丽游戏【入门1顺序结构】

&#x1f468;‍&#x1f4bb;博客主页&#xff1a;花无缺 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 花无缺 原创 收录于专栏 【洛谷算法题】 文章目录 【洛谷算法题】P1000-超级玛丽游戏【入门1顺序结构】&#x1f30f;题目描述&#x1f30f;输入格…...

ubuntu or kylinos软件安装错误的终极解决方案

一、前言 所谓的软件安装,不管是那个系统,都是通过一定的方法把文件从源复制到目的,然后做一些配置工作,使其能正常的运行,卸载。 对于Linux来说,其目录的高度组织化,以及各软件依赖关系的复杂性,使得软件包数据库显得非常重要。 简单来说,软件包数据库最主要记录两…...

30分钟Python自动化从入门到实战(一)

第一章:自动化测试基础 第一节 软件测试分类 关于软件测试领域名词颇多&#xff0c;发现有许多测试新手混淆概念&#xff0c;从不同的角度可以将软件测试有不同的分类的方法&#xff1b;所以&#xff0c;这里汇总常见软件测试的相关名词&#xff0c;对软件测试领域有个概括的…...

FOC之SVPWM学习笔记

一、参考资料 【自制FOC驱动器】深入浅出讲解FOC算法与SVPWM技术 - 知乎FOC入门教程_zheng是在下的博客-CSDN博客DengFOC官方文档技术干货 |【自制】FOC驱动板 二、FOC控制算法流程框图 在FOC控制中主要用到三个PID环&#xff0c;从内到外依次是&#xff1a;电流环、速度环、位…...

DSO 系列文章(3)——DSO后端正规方程构造与Schur消元

文章目录 DSO代码注释&#xff1a;https://github.com/Cc19245/DSO-CC_Comments...

php 使用ES

Download Elasticsearch | Elastic <?phprequire vendor/autoload.php;use Elasticsearch\ClientBuilder;$client ClientBuilder::create()->build();# 索引一个文档 # Version 7.11 $params [index > my_index,id > my_id,body > [testField > abc] ];$…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文通过代码驱动的方式&#xff0c;系统讲解PyTorch核心概念和实战技巧&#xff0c;涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...

uniapp 实现腾讯云IM群文件上传下载功能

UniApp 集成腾讯云IM实现群文件上传下载功能全攻略 一、功能背景与技术选型 在团队协作场景中&#xff0c;群文件共享是核心需求之一。本文将介绍如何基于腾讯云IMCOS&#xff0c;在uniapp中实现&#xff1a; 群内文件上传/下载文件元数据管理下载进度追踪跨平台文件预览 二…...