当前位置: 首页 > news >正文

基于黄金正弦算法优化的BP神经网络(预测应用) - 附代码

基于黄金正弦算法优化的BP神经网络(预测应用) - 附代码

文章目录

  • 基于黄金正弦算法优化的BP神经网络(预测应用) - 附代码
    • 1.数据介绍
    • 2.黄金正弦优化BP神经网络
      • 2.1 BP神经网络参数设置
      • 2.2 黄金正弦算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用黄金正弦算法优化BP神经网络并应用于预测。

1.数据介绍

本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据

2.黄金正弦优化BP神经网络

2.1 BP神经网络参数设置

神经网络参数如下:

%% 构造网络结构
%创建神经网络
inputnum = 2;     %inputnum  输入层节点数 2维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 1;     %outputnum  隐含层节点数

2.2 黄金正弦算法应用

黄金正弦算法原理请参考:https://blog.csdn.net/u011835903/article/details/111699194

黄金正弦算法的参数设置为:

popsize = 20;%种群数量
Max_iteration = 20;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:2*10 = 20; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:10*1 = 10;即hiddenum * outputnum;

第二层权值数量为:1;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 41;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( m s e ( T r a i n D a t a E r r o r ) + m e s ( T e s t D a t a E r r o r ) ) fitness = argmin(mse(TrainDataError) + mes(TestDataError)) fitness=argmin(mse(TrainDataError)+mes(TestDataError))
其中TrainDataError,TestDataError分别为训练集和测试集的预测误差。mse为求取均方误差函数,适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从黄金正弦算法的收敛曲线可以看到,整体误差是不断下降的,说明黄金正弦算法起到了优化的作用:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

相关文章:

基于黄金正弦算法优化的BP神经网络(预测应用) - 附代码

基于黄金正弦算法优化的BP神经网络(预测应用) - 附代码 文章目录 基于黄金正弦算法优化的BP神经网络(预测应用) - 附代码1.数据介绍2.黄金正弦优化BP神经网络2.1 BP神经网络参数设置2.2 黄金正弦算法应用 4.测试结果:5…...

Python标准库概览

Python标准库概览 知识点 标准库: turtle库(必选)标准库: random库(必选)、time库(可选) 知识导图 1、turtle库概述 turtle(海龟)是Python重要的标准库之一,它能够进行基本的图形绘制。turtle库绘制图形有一个基本框架&#x…...

两个列表的最小索引总和

题目: 假设 Andy 和 Doris 想在晚餐时选择一家餐厅,并且他们都有一个表示最喜爱餐厅的列表,每个餐厅的名字用字符串表示。 你需要帮助他们用最少的索引和找出他们共同喜爱的餐厅。 如果答案不止一个,则输出所有答案并且不考虑顺…...

Go语言基础之切片

切片 切片(Slice)是一个拥有相同类型元素的可变长度的序列。它是基于数组类型做的一层封装。它非常灵活,支持自动扩容。 切片是一个引用类型,它的内部结构包含地址、长度和容量。切片一般用于快速地操作一块数据集合 切片的定义…...

关于java三元组的问题

在改代码的时候,发现一个奇怪的地方,举例如下 Testpublic void buildTest(){TT t new TT();Long time tnull?System.currentTimeMillis():t.getTime();System.out.println("done");}Datapublic static class TT{Long time;}这个地方运行就…...

如何正确地设置Outlook SMTP发送电子邮件(wordpress配置)

如何正确地设置Outlook SMTP发送电子邮件(wordpress配置) 作者:虚坏叔叔 博客:https://pay.xuhss.com 早餐店不会开到晚上,想吃的人早就来了!😄 正在寻找正确的Outlook SMTP设置&#xff1f…...

机器学习编译系列---张量程序抽象

机器学习编译系列---张量程序抽象 1. 张量函数概念的引入与抽象的必要性 1. 张量函数概念的引入与抽象的必要性 在文章机器学习编译系列—概述中提到,机器学习编译的一个很重要操作是做等价变换来减少内存或者提高运行效率。变换是以“元张量函数”(private tensor …...

python使用matplotlib实现折线图的绘制

一、意义 数据可视化可以以简洁的方式呈现出数据,发现众多数据中隐藏的规律和意义。Matplotlib是一个数学绘图库。利用它可以制作简单的图表(散点图、折线图)。然后,将基于漫步概念生成一个更有趣的数据集–根据一系列随机决策生成…...

网络协议的定义、组成和重要性?

什么是网络协议? 网络协议是在计算机网络中,用于规定通信实体之间进行数据传输和通信的规则集合。网络协议涵盖了各种通信细节,包括数据包格式、错误处理、数据传输速率等,是用于分组交换数据网络的一种协议,其任务仅…...

vue 使用print.js打印小票

官网:https://printjs.crabbly.com/ // 安装 npm install print-js --save// 引入 import printJS from print-js// 使用 printJS({printable: https://hwke.tbbug.com/images/phone/1899ed9346f64020ff4f9bbae6983952.jpg,type: image,imageStyle: width:100%;ma…...

算法通关村第6关【白银】| 树的层次遍历问题

一、基本层次遍历问题 1.二叉树的层次遍历 思路&#xff1a;使用队列可以很好的保存遍历状态&#xff0c;出队将结点左右子结点入队&#xff0c;用size记录下一层的元素个数&#xff0c;这样就能区分出层了 class Solution {public List<List<Integer>> levelOr…...

Qt与电脑管家3

1.ui页面设计技巧 最外面的widget&#xff1a; 上下左右的margin都置相同的值 这里有4个widget&#xff0c;做好一个后&#xff0c;后面3个可以直接复制.ui文件&#xff0c;然后进行微调即可。 2.现阶段实现的效果&#xff1a; 3.程序结构&#xff1a; btn1--->btn btn1---…...

Jmeter 快速生成测试报告

我们使用Jmeter工具进行接口测试或性能测试后一般是通过察看结果数、聚合报告等监听器来查看响应结果。如果要跟领导汇报测试结果&#xff0c;无法直接通过监听器的结果来进行展示和汇报&#xff0c;因为太low了&#xff0c;因此测试完成后去整理一个数据齐全且美观的报告是非常…...

消息队列——RabbitMQ(一)

MQ的相关概念 什么事mq MQ(message queue)&#xff0c;从字面意思上看&#xff0c;本质是个队列&#xff0c;FIFO 先入先出&#xff0c;只不过队列中存放的内容是 message 而已&#xff0c;还是一种跨进程的通信机制&#xff0c;用于上下游传递消息。在互联网架构中&#xff…...

人工智能在机器学习中的八大应用领域

文章目录 1. 自然语言处理&#xff08;NLP&#xff09;2. 图像识别与计算机视觉3. 医疗诊断与影像分析4. 金融风险管理5. 预测与推荐系统6. 制造业和物联网7. 能源管理与环境保护8. 决策支持与智能分析结论 &#x1f389;欢迎来到AIGC人工智能专栏~探索人工智能在机器学习中的八…...

vue3+ts使用vue-i18n

vue3ts使用vue-i18n 1、安装插件 npm install --save vue-i18nyarn add vue-i18n2、配置文件 locale/index.ts import { createI18n } from vue-i18n import zhCN from ./lang/zh-CN import enUS from ./lang/en-USexport const LOCALE_OPTIONS [{ label: 中文, value: zh…...

在Ubuntu上安装和设置RabbitMQ服务器,轻松实现外部远程访问

文章目录 前言1.安装erlang 语言2.安装rabbitMQ3. 内网穿透3.1 安装cpolar内网穿透(支持一键自动安装脚本)3.2 创建HTTP隧道 4. 公网远程连接5.固定公网TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址 前言 RabbitMQ是一个在 AMQP(高级消息队列协议)基…...

Redis多机实现

Background 为啥要有多机--------------1.容错 2.从服务器分担读压力。 主从结构一大难题------------如何保障一致性&#xff0c;对这个一致性要求不是很高&#xff0c;因为redis是用来做缓存的 同时我们要自动化进行故障转移-------哨兵机制&#xff0c;同时哨兵也可能cra…...

ClickHouse安装及部署

文章目录 Docker快速安装Ubuntu预编译安装包安装检查是否支持SSE4.2使用预编译安装包 Tgz安装包配置文件修改修改密码配置远程访问 其他主机访问文章参考 Docker快速安装 本地pull镜像 docker run -d --name ch-server --ulimit nofile262144:262144 -p 9000:9000 -p 8123:81…...

[HarekazeCTF2019]Easy Notes-代码审计

文章目录 [HarekazeCTF2019]Easy Notes-代码审计 [HarekazeCTF2019]Easy Notes-代码审计 登录之后有几个功能点&#xff0c;可以添加节点&#xff0c;然后使用Export导出 我们查看源码&#xff0c; 我们发现想要拿到flag的条件时$_SESSION[admin]true 如果我们能够控制sessio…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...