2023年高教社杯数学建模思路 - 复盘:光照强度计算的优化模型
文章目录
- 0 赛题思路
- 1 问题要求
- 2 假设约定
- 3 符号约定
- 4 建立模型
- 5 模型求解
- 6 实现代码
- 建模资料
0 赛题思路
(赛题出来以后第一时间在CSDN分享)
https://blog.csdn.net/dc_sinor?type=blog
1 问题要求
现在已知一个教室长为15米,宽为12米,在距离地面高2.5米的位置均
匀的安放4个光源(分别为1、2、3、4),各个光源的光照强度均为一个单位,如下图

要求:
- (1)如何计算教室内任意一点的光照强度?(光源对目标点的光照强度与该光源到目标点距离的平方成反比,与该光源的强度成正比).
- (2)画出距离地面1米处各个点的光照强度与位置(横纵坐标)之间的函数关系曲面图,试同时给出一个近似的函数关系式.
- (3)假设离地面1米高正是学生桌面的高度,如何设计这四个点光源的位置,才能使学生对光照的平均满意度达到最高?
- (4)若将题目中的点光源换成线光源,以上(2)、(3)问的结果又如何?
(对于(1)、(2)问,假设横向(纵向)墙壁与光源、光源与光源、光源与墙壁之间的距离是相等的.)
2 假设约定
- 1 光不会通过窗、门等外涉,也不考虑光在空气中的消耗,即光照强度和不变;
- 2 室内不受外界光源影响;
- 3 教室高度为2.5米;
- 4 不考虑光的反射;
- 5 线光源发光是均匀的.
3 符号约定

4 建立模型


5 模型求解


6 实现代码
matlab 实现代码
建议最好用python去实现,图会好看一些,而且国内当前趋势会逐渐淘汰matlab,目前有些学校已经无法使用matlab了
clear
clc
max=0;min=4;
for i=0:0.1:3for j=0.1:0.1:4s=0;x1=8+i,y1=5-jx2=8+i,y2=10+jx3=4-i,y3=10+jx4=4-i,y4=5-j for x=0:0.1:12for y=0:0.1:15for z=0:0.1:2.5if x1~=x & y1~=y & x2~=x & y2~=y & x3~=x & y3~=y & x4~=x & y4~=y s=s+1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2);endendendendk=4./s;l=0;z=1;for x=0:0.1:12for y=0:0.1:15l=l+k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));endendif l>maxmax=l;x11=x1;y11=y1;x12=x2;y12=y2;x13=x3;y13=y3;x14=x4;y14=y4;endp=l./(120.*150);Q=0;for x=0:0.1:12for y=0:0.1:15Q=Q+(k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2))-p).^2.^(1./2);endendif min>Qmin=Q;x21=x1;y21=y1;x22=x2;y22=y2;x23=x3;y23=y3;x24=x4;y24=y4;endend
end
disp(['最大值','x11=',num2str(x11),' ','y11=',num2str(y11),' ','x12=',num2str(x12),' ','y12=',num2str(y12),' ','x13=',num2str(x13),' ','y13=',num2str(y13),' ','x14=',num2str(x14),' ','y14=',num2str(y14)])
disp(['最平均','x21=',num2str(x21),' ','y21=',num2str(y21),' ','x22=',num2str(x22),' ','y22=',num2str(y22),' ','x23=',num2str(x23),' ','y23=',num2str(y23),' ','x24=',num2str(x24),' ','y24=',num2str(y24)])
附录二:
clear
clc
max=0;min=4;li=4;
for i=0:0.1:3for j=0.1:0.1:4s=0;x1=8+i,y1=5-jx2=8+i,y2=10+jx3=4-i,y3=10+jx4=4-i,y4=5-j for x=0:0.1:12for y=0:0.1:15for z=0:0.1:2.5if x1~=x & y1~=y & x2~=x & y2~=y & x3~=x & y3~=y & x4~=x & y4~=y s=s+1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2);endendendendk=4./s;l=0;z=1;e=0for x=0:0.1:12for y=0:0.1:15l=l+k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));r=k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));e=e+(r-6*10^(-32))^2;endendS=(l-0.1278)^2+eif S<lili=Sx11=x1,y11=y1, x12=x2,y12=y2, x13=x3,y13=y3, x14=x4,y14=y4,en4en4
en4
disp(['x11=',num2str(x11),' ','y11=',num2str(y11),' ','x12=',num2str(x12),' ','y12=',num2str(y12),' ','x13=',num2str(x13),' ','y13=',num2str(y13),' ','x14=',num2str(x14),' ','y14=',num2str(y14)])
li
建模资料
资料分享: 最强建模资料


相关文章:
2023年高教社杯数学建模思路 - 复盘:光照强度计算的优化模型
文章目录 0 赛题思路1 问题要求2 假设约定3 符号约定4 建立模型5 模型求解6 实现代码 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 问题要求 现在已知一个教室长为15米,宽为12米&…...
生成式人工智能的潜在有害影响与未来之路(二)
利润高于隐私:不透明数据收集增加 背景和风险 生成型人工智能工具建立在各种大型、复杂的机器学习模型之上,这些模型需要大量的训练数据才能发挥作用。对于像ChatGPT这样的工具,数据包括从互联网上抓取的文本。对于像Lensa或Stable Diffusi…...
如何自己实现一个丝滑的流程图绘制工具(三)自定义挂载vue组件
背景 bpmn-js是个流程图绘制的工具,但是现在我希望实现的是,绘制的不是节点而是一个vue组件。 保留线的拖拽和连接。 方案 那就说明不是依赖于节点的样式,找到了他有个属性,就是类似覆盖节点的操作。 思路就是用vue组件做遮罩&…...
UNIAPP调用API接口
API:开发者可以通过这些接口与其它程序进行交互,获取所需数据或者执行指定操作。 网络请求 API: UniApp 中内置了网络请求 API,方便调用 uni.request uni.uploadFile uni.request 接口主要用于实现网络请求。GET 和 POST 是使用最普遍的两种…...
理解 Delphi 的类(五) - 认识类的继承
先新建一个 VCL Forms Application 工程, 代码中就已经出现了两个类: 一个是 TForm 类; 一个是 TForm1 类; TForm1 继承于 TForm. TForm 是 TForm1 的父类; TForm1 是 TForm 的子类. unit Unit1;interfaceusesWindows, Messages, SysUtils, Variants, Classes, Graphics, Contr…...
mybatis概述及搭建
目录 1.概述 2.mybatis搭建 1.创建一个maven项目,添加mybatis、mysql所依赖的jar 2.创建一个数据库表,及对应的java类 3.创建一个mybatis的核心配置文件,配置数据库连接信息,配置sql映射文件 4.创建sql映射文件,…...
DNDC模型---土壤碳储量、温室气体排放、农田减排、土地变化、气候变化中的应用
由于全球变暖、大气中温室气体浓度逐年增加等问题的出现,“双碳”行动特别是碳中和已经在世界范围形成广泛影响。国家领导人在多次重要会议上讲到,要把“双碳”纳入经济社会发展和生态文明建设整体布局。同时,提到要把减污降碳协同增效作为促…...
Android studio 2022.3.1 鼠标移动时不显示快速文档
在使用技术工具的过程中,我们时常会遇到各种各样的问题和挑战。最近,我升级了我的Android Studio到2022.3.1版本,但是在使用过程中,我碰到了一个让我颇为困扰的问题:在鼠标移动到类名或字段上时,原本应该显…...
五度易链最新“产业大数据服务解决方案”亮相,打造数据引擎,构建智慧产业!
快来五度易链官网 点击网址【http://www.wdsk.net/】 看看我们都发布了哪些新功能!!! 自2015年布局产业大数据服务行业以来,“五度易链”作为全国产业大数据服务行业先锋企业,以“让数据引领决策,以智慧驾驭未来”为愿景,肩负“打…...
简述hive环境搭建
文章目录 部署参数配置hive简单命令 部署 Hive的三种部署模式,主要按Metastore 的运行模式进行区分。 在安装Hive之前,要求先预装JDK 8、Hadoop、MySQL ; 1.下载hive,并解压缩到用户主目录下 tar -xzvf apache-hive-2.3.6-bin.t…...
小米AI音箱联网升级折腾记录(解决配网失败+升级失败等问题)
小米AI音箱(一代)联网升级折腾记录 我折腾了半天终于勉强能进入下载升级包这步,算是成功一半吧… 总结就是,网络信号一定要好,需要不停换网找到兼容的网,还需要仔细配置DNS让音响连的上api.mina.mi.com 推荐…...
tensorRT安装
官方指导文档:Installation Guide :: NVIDIA Deep Learning TensorRT Documentation 适配很重要!!!! 需要cuda, cuDNN, tensorRT三者匹配。我的cuda11.3 所以对应的cuDNN和tensorRT下载的是如下版本: cud…...
电脑重装+提升网速
https://www.douyin.com/user/self?modal_id7147216653720341767&showTabfavorite_collectionhttps://www.douyin.com/user/self?modal_id7147216653720341767&showTabfavorite_collection 零封有哈数的主页 - 抖音 (douyin.com)https://www.douyin.com/user/self?…...
Modelica由入门到精通—为什么要学习Modelica语言
1.为什么要学习Modelica语言 本人正在研究Modelica 多领域统一建模仿真语言,特此做学习入门介绍,希望可以帮助需要的小伙伴。 文章目录 1.为什么要学习Modelica语言一、背景二、系统建模与仿真2.1 系统仿真与系统模型2.2 仿真价值与可靠性 三、物理建模…...
opencv 进阶20-随机森林示例
OpenCV中的随机森林是一种强大的机器学习算法,旨在解决分类和回归问题。随机森林使用多个决策树来进行预测,每个决策树都是由随机选择的样本和特征组成的。在分类问题中,随机森林通过投票来确定最终的类别;在回归问题中࿰…...
Spring Boot进阶(58):集成PostgreSQL数据库及实战使用 | 万字长文,超级详细
1. 前言🔥 PostgreSQL是一种广泛使用的开源关系型数据库,具有可靠性高、性能优异、拥有丰富的数据类型和扩展等优点,越来越多的企业和开发者开始使用它来存储和管理数据。而Spring Boot是一种快速开发的框架,可以简化开发过程并提…...
Java | 使用ServerSocket查找TCP可用端口
关注:CodingTechWork 引言 在项目开发中,有一个程序是专门给服务下发tcp端口占用的,但是tcp端口有时候会被其他服务给占用,此时端口就会冲突。本文提供一个工具类进行端口占用判断并返回可用端口。 代码 工具类 Slf4j public …...
【深入浅出C#】章节 9: C#高级主题:LINQ查询和表达式
C#高级主题涉及到更复杂、更灵活的编程概念和技术,能够让开发者更好地应对现代软件开发中的挑战。其中,LINQ查询和表达式是C#高级主题中的一项关键内容,具有以下重要性和优势: 数据处理和操作: 在现代软件中ÿ…...
【Git】git clone --depth 1 浅克隆
问题 PycharmProjects git clone git Cloning into risk-package... remote: Counting objects: 576, done. error: pack-objects died of signal 947/574) error: git upload-pack: git-pack-objects died with error. fatal: git upload-pack: aborting due to possible r…...
搭建 Gitlab
当设置和配置 GitLab 实例并执行诸如创建群组、项目、用户和上传代码等操作时,涉及到多个步骤,每个步骤都有特定的目的。让我们逐步解释每个步骤并说明其背后的原因: 安装必需的软件: yum install -y curl policycoreutils-python…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...
搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...
day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...
