当前位置: 首页 > news >正文

unet pytorch

1.单机多卡版本:代码中的DistributedDataParallel (DDP) 部分对应单机多卡的分布式训练方式

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import RandomHorizontalFlip, RandomVerticalFlip, RandomRotation, RandomResizedCrop, ToTensor
from torch.nn.parallel import DistributedDataParallel as DDP# 定义ResNet块
class ResNetBlock(nn.Module):def __init__(self, in_channels, out_channels):super(ResNetBlock, self).__init__()self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)self.relu = nn.ReLU(inplace=True)def forward(self, x):residual = xout = self.conv1(x)out = self.relu(out)out = self.conv2(out)out += residualout = self.relu(out)return out# 定义UNet模型
class UNet(nn.Module):def __init__(self, in_channels, out_channels):super(UNet, self).__init__()self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, padding=1)self.block1 = ResNetBlock(64, 64)self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)self.block2 = ResNetBlock(128, 128)self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1)self.block3 = ResNetBlock(256, 256)self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)self.conv4 = nn.Conv2d(256, 512, kernel_size=3, padding=1self.block4 = ResNetBlock(512, 512)self.upconv3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)self.upconv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)self.upconv1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)self.conv5 = nn.Conv2d(128, out_channels, kernel_size=1)def forward(self, x):x1 = self.conv1(x)x1 = self.block1(x1)x2 = self.pool1(x1)x2 = self.conv2(x2)x2 = self.block2(x2)x3 = self.pool2(x2)x3 = self.conv3(x3)x3 = self.block3(x3)x4 = self.pool3(x3)x4 = self.conv4(x4)x4 = self.block4(x4)x = self.upconv3(x4)x = torch.cat((x, x3), dim=1)x = self.conv5(x)x = self.upconv2(x)x = torch.cat((x, x2), dim=1)x = self.upconv1(x)x = torch.cat((x, x1), dim=1)x = self.conv5(x)return x# 定义数据集类
class CustomDataset(Dataset):def __init__(self, data_dir, transform=None):self.data = # Load data from data_dirself.transform = transformdef __len__(self):return len(self.data)def __getitem__(self, index):image, mask = self.data[index]if self.transform:image = self.transform(image)mask = self.transform(mask)return image, mask# 设置训练参数
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
num_epochs = 10
batch_size = 4# 创建UNet模型和优化器
model = UNet(in_channels=3, num_classes=2).to(device)
model = DDP(model)optimizer = optim.Adam(model.parameters(), lr=0.001)# 定义数据增强方法
transform = transforms.Compose([RandomHorizontalFlip(),RandomVerticalFlip(),RandomRotation(15),RandomResizedCrop(256, scale=(0.8, 1.0)),ToTensor(),
])# 加载数据集并进行数据增强
dataset = CustomDataset(data_dir="path_to_dataset", transform=transform)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=4)# 训练循环
for epoch in range(num_epochs):model.train()total_loss = 0.0for images, masks in dataloader:images = images.to(device)masks = masks.to(device)optimizer.zero_grad()outputs = model(images)loss = nn.CrossEntropyLoss()(outputs, masks)loss.backward()optimizer.step()total_loss += loss.item()print(f"Epoch {epoch+1}/{num_epochs}, Loss: {total_loss/len(dataloader)}")

2.多机多卡版本:使用torch.utils.data.distributed.DistributedSampler和torch.distributed.init_process_group来实现多机多卡的分布式训练,确保在每个进程中都有不同的数据划分和完整的通信。

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel
from torchvision.transforms import transforms
from torchvision.datasets import YourDataset
from torch.utils.data.distributed import DistributedSampler
import torch.distributed as dist# 定义ResNet块
class ResNetBlock(nn.Module):def __init__(self, in_channels, out_channels):super(ResNetBlock, self).__init__()self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)self.relu = nn.ReLU(inplace=True)def forward(self, x):residual = xout = self.conv1(x)out = self.relu(out)out = self.conv2(out)out += residualout = self.relu(out)return out# 定义UNet模型
class UNet(nn.Module):def __init__(self, in_channels, out_channels):super(UNet, self).__init__()self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, padding=1)self.block1 = ResNetBlock(64, 64)self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)self.block2 = ResNetBlock(128, 128)self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1)self.block3 = ResNetBlock(256, 256)self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)self.conv4 = nn.Conv2d(256, 512, kernel_size=3, padding=1self.block4 = ResNetBlock(512, 512)self.upconv3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)self.upconv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)self.upconv1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)self.conv5 = nn.Conv2d(128, out_channels, kernel_size=1)def forward(self, x):x1 = self.conv1(x)x1 = self.block1(x1)x2 = self.pool1(x1)x2 = self.conv2(x2)x2 = self.block2(x2)x3 = self.pool2(x2)x3 = self.conv3(x3)x3 = self.block3(x3)x4 = self.pool3(x3)x4 = self.conv4(x4)x4 = self.block4(x4)x = self.upconv3(x4)x = torch.cat((x, x3), dim=1)x = self.conv5(x)x = self.upconv2(x)x = torch.cat((x, x2), dim=1)x = self.upconv1(x)x = torch.cat((x, x1), dim=1)x = self.conv5(x)return x# 定义数据集类
class CustomDataset(Dataset):def __init__(self, data_dir, transform=None):self.data = # Load data from data_dirself.transform = transformdef __len__(self):return len(self.data)def __getitem__(self, index):image, mask = self.data[index]if self.transform:image = self.transform(image)mask = self.transform(mask)return image, maskdef main(rank, world_size):# 设置分布式训练参数torch.cuda.set_device(rank)torch.distributed.init_process_group(backend='nccl', init_method='env://', world_size=world_size, rank=rank)# 设置训练参数num_epochs = 10batch_size_per_gpu = 4# 创建UNet模型和优化器in_channels = 3model = UNet(in_channels=3, num_classes=2).cuda(rank)model = DistributedDataParallel(model, device_ids=[rank])optimizer = optim.Adam(model.parameters(), lr=0.001)# 数据增强方法transform = transforms.Compose([transforms.RandomHorizontalFlip(),transforms.RandomVerticalFlip(),transforms.RandomRotation(30),transforms.RandomResizedCrop(256, scale=(0.8, 1.2)),transforms.ToTensor()])# 加载训练集和验证集train_dataset = CustomDataset(transform=transform)train_sampler = DistributedSampler(train_dataset)train_loader = DataLoader(train_dataset, batch_size=batch_size_per_gpu, sampler=train_sampler)# 训练循环for epoch in range(num_epochs):model.train()total_loss = 0.0for images, masks in train_loader:images = images.cuda(rank)masks = masks.cuda(rank)# 执行前向传播和反向传播optimizer.zero_grad()outputs = model(images)loss = F.binary_cross_entropy_with_logits(outputs, masks)loss.backward()optimizer.step()total_loss += loss.item()if world_size > 1:torch.distributed.all_reduce(total_loss)total_loss /= len(train_sampler)print(f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_loss:.4f}")def main_multi_gpu():world_size = torch.cuda.device_count()if world_size > 1:torch.multiprocessing.spawn(main, args=(world_size,), nprocs=world_size, join=True)else:main(0, 1)if __name__ == '__main__':main_multi_gpu()

相关文章:

unet pytorch

1.单机多卡版本:代码中的DistributedDataParallel (DDP) 部分对应单机多卡的分布式训练方式 import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from torchvisi…...

前置微小信号放大器的作用是什么

前置微小信号放大器是一种电子设备,用于将弱信号放大到足够的水平以供后续处理。它在许多领域都有广泛的应用,如通信系统、无线电接收机、传感器接口等。 前置微小信号放大器的主要作用是增加信号的强度。当我们处理微弱信号时,如果不进行放大…...

一百六十五、Kettle——用海豚调度器调度Linux资源库中的kettle任务脚本(亲测、附流程截图)

一、目的 在Linux上脚本运行kettle的转换任务、无论是Linux本地还是Linux资源库都成功后,接下来就是用海豚调度Linux上kettle任务 尤其是团队开发中,基本都要使用共享资源库,所以我直接使用海豚调度Linux资源库的kettle任务脚本 二、前提条…...

xfs ext4 结合lvm 扩容、缩容 —— 筑梦之路

ext4 文件系统扩容、缩容操作 扩容系统根分区 根文件系统在 /dev/VolGroup/lv_root 逻辑卷上,文件系统类型为ext4,大小为10G,现在要将其扩容成20G。 给空闲空间分区# 调整分区类型为LVM,也就是8e类型 fdisk /dev/sdb# 选定分区后使…...

如何修改由 img 标签引入的 svg 图片颜色 (react环境)

网上试了好几个方法都不行&#xff0c;问了一下身边同事的处理方法&#xff0c;终于搞定了。话不多说&#xff0c;直接上代码&#xff1a; 此处是 jsx 中的图标引入 <img className{STYLE.contactIcon}onClick{() > {你的一些操作}} style{{WebkitMaskImage: url(${ite…...

归一化的作用,sklearn 安装

目录 归一化的作用&#xff1a; 应用场景说明 sklearn 准备工作 sklearn 安装 sklearn 上手 线性回归实战 归一化的作用&#xff1a; 归一化后加快了梯度下降求最优解的速度; 归一化有可能提高精度(如KNN) 应用场景说明 1&#xff09;概率模型不需要归一化&#xff…...

半导体企业如何进行跨网数据传输,又能保护核心数据安全?

为了保护设计文档、代码文件等内部核心数据&#xff0c;集成电路半导体企业一般会将内部隔离成多个网络&#xff0c;比如研发网、办公网、生产网、测试网等。常规采取的网络隔离手段如下&#xff1a; 1、云桌面隔离&#xff1a;一方面实现数据不落地&#xff0c;终端数据安全有…...

lvs-DR模式:

lvs-DR数据包流向分析 客户端发送请求到 Director Server&#xff08;负载均衡器&#xff09;&#xff0c;请求的数据报文&#xff08;源 IP 是 CIP,目标 IP 是 VIP&#xff09;到达内核空间。 Director Server 和 Real Server 在同一个网络中&#xff0c;数据通过二层数据链路…...

Delphi 开发手持机(android)打印机通用开发流程(举一反三)

目录 一、场景说明 二、厂家应提供的SDK文件 三、操作步骤&#xff1a; 1. 导出Delphi需要且能使用的接口文件&#xff1a; 2. 创建FMX Delphi项目&#xff0c;将上一步生成的接口文件&#xff08;V510.Interfaces.pas&#xff09;引入: 3. 将jarsdk.jar 包加入到 libs中…...

nodejs替换模版中${}的内容

要在js中想要替换替换模板中的${}&#xff0c;可以使用字符串的replace()方法结合正则表达式或者函数来实现替换操作。 以下是两种常见的替换方式&#xff1a; 使用正则表达式&#xff1a; 方法一&#xff1a; const template "Hello, ${name}! Today is ${day}."…...

【快速傅里叶变换(fft)和逆快速傅里叶变换】生成雷达接收到的经过多普勒频移的脉冲雷达信号(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

嵌入式学习之linux

今天&#xff0c;主要对linux文件操作原理进行了学习&#xff0c;主要学习的内容就是对linux文件操作原理进行理解。写的代码如下&#xff1a;...

自动驾驶合成数据科普一:不做真实数据的“颠覆者”,做“杠杆”

前言&#xff1a; 在7月底的一篇文章中&#xff0c;九章智驾提到&#xff0c;数据闭环能力是自动驾驶下半场的“入场券”&#xff0c;这一观点在行业内引起了广泛共鸣。 在数据闭环体系中&#xff0c;仿真技术无疑是非常关键的一环。仿真的起点是数据&#xff0c;而数据又分为真…...

云服务器 宝塔(每次更新)

su root 输入密码 使用 root 权限 /etc/init.d/bt default 获取宝塔登录 位置和账号密码。进入宝塔 删除数据库 删除php前端站点 删除PM2后端项目 前端更改完配置打包dist文件 后端更改完配置项目打包 数据库结构导出 导入数据库 配置 PM2 后端 安装依赖...

【学习FreeRTOS】第16章——FreeRTOS事件标志组

1.事件标志组简介 事件标志位&#xff1a;用一个位&#xff0c;来表示事件是否发生 事件标志组是一组事件标志位的集合&#xff0c; 可以简单的理解事件标志组&#xff0c;就是一个整数。 事件标志组的特点&#xff1a; 它的每一个位表示一个事件&#xff08;高8位不算&…...

Echarts 柱状图的 itemStyle的normal中label如何format?

在 Echarts 中&#xff0c;可以通过设置 formatter 属性来对柱状图的标签进行自定义格式化。例如&#xff1a; itemStyle: {normal: {label: {show: true,formatter: function(params) {return params.value.toFixed(2); // 将标签内容保留两位小数}}} } 在上面的例子中&…...

我的笔记:数据体系规则

1、中台数据体系特征 覆盖全域数据&#xff1a;数据集中建设&#xff0c;覆盖所有业务过程数据&#xff1b; 结构层次清晰&#xff1a;纵向数据分层&#xff0c;横向主题域&#xff0c;业务过程划分&#xff0c;让整个层析结构清晰易理解&#xff1b; 数据准确一致&#xff1a…...

苍穹外卖 day2 反向代理和负载均衡

一 前端发送的请求&#xff0c;是如何请求到后端服务 前端请求地址&#xff1a;http://localhost/api/employee/login 路径并不匹配 后端接口地址&#xff1a;http://localhost:8080/admin/employee/login 二 查找前端接口 在这个页面上点击f12 后转到networ验证&#xff0…...

【SpringBoot】SpringBoot完整实现电子商务系统

一个完整的电子商务系统需要涉及到前台展示、后台管理、商品管理、订单管理、用户管理等各方面。这里提供一个简单的实现示例&#xff0c;供参考。 前端代码 前端使用Vue框架&#xff0c;以下是部分代码示例&#xff1a; 商品列表页&#xff1a; <template><div>…...

RT-Thread 线程管理(学习二)

线程相关操作 线程相关的操作包括&#xff1a;创建/初始化、启动、运行、删除/脱离。 动态线程与静态线程的区别&#xff1a;动态线程是系统自动从动态内存堆上分配栈空间与线程句柄&#xff08;初始化heap之后才能使用create创建动态线程&#xff09;&#xff0c;静态线程是…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候&#xff0c;难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵&#xff0c;或者买了二手 iPhone 却被原来的 iCloud 账号锁住&#xff0c;这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

蓝桥杯 冶炼金属

原题目链接 &#x1f527; 冶炼金属转换率推测题解 &#x1f4dc; 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V&#xff0c;是一个正整数&#xff0c;表示每 V V V 个普通金属 O O O 可以冶炼出 …...

论文阅读:Matting by Generation

今天介绍一篇关于 matting 抠图的文章&#xff0c;抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法&#xff0c;已经有很多的工作和这个任务相关。这两年 diffusion 模型很火&#xff0c;大家又开始用 diffusion 模型做各种 CV 任务了&am…...

前端开发者常用网站

Can I use网站&#xff1a;一个查询网页技术兼容性的网站 一个查询网页技术兼容性的网站Can I use&#xff1a;Can I use... Support tables for HTML5, CSS3, etc (查询浏览器对HTML5的支持情况) 权威网站&#xff1a;MDN JavaScript权威网站&#xff1a;JavaScript | MDN...