回归预测 | MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测
回归预测 | MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测
目录
- 回归预测 | MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测
- 效果一览
- 基本介绍
- 模型描述
- 程序设计
- 参考资料
效果一览




基本介绍
MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测;
程序包含:单隐含层BP神经网络、双层隐含层IBP神经网络、遗传算法优化IBP神经网络、改进遗传-粒子群算法优化IBP神经网络,结果显示改进的遗传-粒子群算法优化结果更佳。运行环境2018及以上。
模型描述
BP(Back-propagation,反向传播)神经网络是最传统的神经网络。也就是使用了Back-propagation算法的神经网络。请注意他不是时下流行的那一套深度学习。要训练深度学习level的网络你是不可以使用这种算法的。原因我们后面解释。而其实机器学习的bottleneck就是成功的突破了非常深的神经网络无法用BP算法来训练的问题。
程序设计
- 完整源码和数据获取方式:私信回复MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测(多指标,多图)。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res = xlsread('data.xlsx');%% 划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 提取权值和阈值
w1 = pop(1 : inputnum * hiddennum);
B1 = pop(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = pop(inputnum * hiddennum + hiddennum + 1 : ...inputnum * hiddennum + hiddennum + hiddennum * outputnum);
B2 = pop(inputnum * hiddennum + hiddennum + hiddennum * outputnum + 1 : ...inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum);%% 网络赋值
net.Iw{1, 1} = reshape(w1, hiddennum, inputnum );
net.Lw{2, 1} = reshape(w2, outputnum, hiddennum);
net.b{1} = reshape(B1, hiddennum, 1);
net.b{2} = B2';%% 网络训练
net = train(net, p_train, t_train);%% 仿真测试
t_sim1 = sim(net, p_train);
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/129869457%% 仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% 均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%% 相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:
回归预测 | MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测
回归预测 | MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测 目录 回归预测 | MATLAB实现GA-APSO-IBP改进遗传-粒子群算法优化双层BP神经网络多输入单输出回归预测效果一览基本介绍模型描述程序设计参考资料 效果一览 基本介绍 MATLAB实现GA-…...
Spring cache整合Redis使用介绍
🍓 简介:java系列技术分享(👉持续更新中…🔥) 🍓 初衷:一起学习、一起进步、坚持不懈 🍓 如果文章内容有误与您的想法不一致,欢迎大家在评论区指正🙏 🍓 希望这篇文章对你有所帮助,欢…...
Metasploit提权
一、bypassuac 用户账户控制(User Account Control,简写作UAC)是微软公司在其Windows Vista及更高版本操作系统中采用的一种控制机制。其原理是通知用户是否对应用程序使用硬盘驱动器和系统文件授权,以达到帮助阻止恶意程序(有时也…...
TypeScript三种特殊类型
1.any类型 说明:any类型代表着可以赋值任意类型 let nickname:any"王二"nickname15nicknametruenicknameundefinednicknamenullnickname{}2.unknown类型 说明:类似any类型;只是不能赋值到其它类型上;除了any和known。…...
如何使用CSS实现一个响应式轮播图?
聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 使用CSS实现响应式轮播图的示例⭐ HTML 结构⭐ CSS 样式 (styles.css)⭐ JavaScript 代码 (script.js)⭐ 实现说明⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带…...
数据生成 | MATLAB实现MCMC马尔科夫蒙特卡洛模拟的数据生成
数据生成 | MATLAB实现MCMC马尔科夫蒙特卡洛模拟的数据生成 目录 数据生成 | MATLAB实现MCMC马尔科夫蒙特卡洛模拟的数据生成生成效果基本描述模型描述程序设计参考资料 生成效果 基本描述 1.MATLAB实现MCMC马尔科夫蒙特卡洛模拟的数据生成; 2.马尔科夫链蒙特卡洛方…...
【从零开始的rust web开发之路 二】axum中间件和共享状态使用
系列文章目录 第一章 axum学习使用 第二章 axum中间件使用 文章目录 系列文章目录前言一、中间件是什么二、中间件使用常用中间件使用中间件使用TraceLayer中间件实现请求日志打印自定义中间件 共享状态 前言 上篇文件讲了路由和参数相应相关的。axum还有个关键的地方是中间件…...
Vue操作时间
一、获取现在时间 const currentTime () > {let date new Date();let year date.getFullYear(); //月份从0~11,所以加一let month date.getMonth();let dateArr [date.getMonth() 1,date.getDate(),date.getHours(),date.getMinutes(),date.getSeconds(),…...
数据库——Redis 常见数据结构以及使用场景分析
文章目录 1. string2. list3. hash4. set5. sorted set 你可以自己本机安装 redis 或者通过 redis 官网提供的在线 redis 环境。 1. string 介绍 :string 数据结构是简单的 key-value 类型。虽然 Redis 是用 C 语言写的,但是 Redis 并没有使用 C 的字符串…...
数学建模-规划工具箱yalmip
官网下载 实例 %% yalmip 求解 yalmip clc;clear;close all; %% %sdpvar实型变量 intvar 整形变量 binvar 0-1型变量 psdpvar(3,1); %定义变量 %目标函数 要把求最大值转化为最小值 Objective-p(1)^2p(2)^2-p(2)*p(3);%约束条件 Constraints[0<p<1,(p(1)^2p…...
[SQL挖掘机] - 窗口函数 - 计算移动平均
介绍: 在窗口函数使用时,计算的是累积到当前行的所有的数据的相关操作。 实际上,还可以指定更加详细的汇总范围。该汇总范围称为 框架 (frame)。 其实这里也可以理解成一个窗口, 这个窗口是我们可以进行设置的. 之前我们介绍的窗口函数是根据partition…...
域名和hostname
最近用git克隆远程仓库时总是超时,报错说是代理的问题,但打开和关闭代理都没能解决问题,后面了解到可以关闭git命令的全局代理: git config --global --unset http.proxy git config --global --unset https.proxy如果下次要用的…...
echarts 甘特图一组显示多组数据
<template><el-button type"primary" click"addlin">添加线</el-button><el-button type"success" click"addArea">添加区域</el-button><div ref"echart" id"echart" class&qu…...
1139. 最大的以 1 为边界的正方形;2087. 网格图中机器人回家的最小代价;1145. 二叉树着色游戏
1139. 最大的以 1 为边界的正方形 核心思想:枚举正方向的右下角坐标(i,j),然后你只需要判断四条边的连续一的最小个数即可,这里是边求连续一的个数同时求解结果。 087. 网格图中机器人回家的最小代价 核心…...
css滚动条的使用
前言: css滚动条的使用。 1、使用案例1:背景不要,只展示一个滚动条 如果是默认整体,::就够用了,如果是某个元素,可以 .abc:: ,如果是scss这种的 &:: ::-webkit-scrollbar {width: 6px; } ::-webkit…...
优化Python代理爬虫的应用
当我们在资源受限的环境中使用Python代理爬虫时,我们需要采取一些优化措施,以确保程序的高效性和稳定性。在本文中,我将分享一些关于如何优化Python代理爬虫在资源受限环境下的应用的实用技巧。 首先我们来了解,哪些情况算是资源…...
[C++] STL_vector使用与常用接口的模拟实现
文章目录 1、vector的介绍2、vector的使用2.1 vector的定义2.2 vector迭代器的使用2.3 vector的空间增长问题 3、vector的增删查改3.1 push_back(重点)3.2 pop_back(重点)3.3 operator[](重点)3.4 insert3.…...
【LeetCode】167. 两数之和 II - 输入有序数组 - 双指针
目录标题 2023-8-23 09:25:08 2023-8-23 09:25:08 自己写的不是常量级的额外空间,但是写出来了,记录一下。 下次写的时候,请用双指针。 (其实我想了想一想,双指针就没感觉出来:因为我只想到双指针两个都…...
YOLOV1
YOU ONLY LOOK ONCE...
美团增量数仓建设新进展
摘要:本文整理自美团系统研发工程师汤楚熙,在 Flink Forward Asia 2022 实时湖仓专场的分享。本篇内容主要分为四个部分: 建设背景核心能力设计与优化业务实践未来展望 点击查看原文视频 & 演讲PPT 一、美团增量数仓的建设背景 美团数仓架…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式
今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...
