当前位置: 首页 > news >正文

物种气候生态位动态量化与分布特征模拟

在全球气候快速变化的背景下,理解并预测生物种群如何应对气候变化,特别是它们的地理分布如何变化,已经变得至关重要。利用R语言进行物种气候生态位动态量化与分布特征模拟,不仅可以量化描述物种对环境的需求和适应性,预测物种的潜在生态位和分布,还可以模拟物种分布的动态变化,捕捉生物种群生态位的时空异质性。这种技术为我们提供了一种更加精确、系统的工具,有助于我们更好地理解生物种群分布的生态驱动机制,为制定和实施生物保护策略提供科学依据。

点击查看原文icon-default.png?t=N6B9https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247542523&idx=6&sn=5617b35f6e35981c04fc1ac8dab15b06&chksm=ce64cc10f91345069f5a5910a1d827a036eb057961100649c43c344cdf9acdbb2e46191f5db3&token=1639767299&lang=zh_CN#rd

   R语言是一种广泛用于统计分析和图形表示的编程语言,强大之处在于可以进行多元数据统计分析,以及丰富的生态环境数据分析的方法,在生态学领域得到广泛应用。本次课程将通过R语言多个程序包与GIS融合应用,提升物种气候生态位动态量化与分布特征模拟的研究方法和技能。应该广大学者要求Ai尚研修特举办“基于R语言的物种气候生态位动态量化与分布特征模拟实践技术会议“。

目标:

1、理解物种气候生态位的概念和作用;

2、掌握R语言在物种气候生态位动态量化与分布特征模拟中的基本操作;

3、学会利用R语言进行物种气候生态位动态量化与分布特征模拟的实际案例分析;

4、培养对物种气候生态位动态量化与分布特征模拟的研究方法和技能。

专题一、引言

1) 物种气候生态位理论基础

2) 物种分布特征与物种分布模型的基本原理

3) R语言基础 (R语言环境设置和基本操作、数据导入、处理和可视化)

专题二、数据获取与处理方法

1) 数据获取途径与方法

掌握模型所需数据类型,了解常用数据库与数据获取方法。

2) 数据清洗与变量选择

掌握模型数据输入格式与数据选择标准,学会用多种方式实现数据清洗与变量选择

专题三、组合物种分布模型(Ensemble Species Distribution Model)的原理与使用

1)组合物种分布模型算法原理与参数组成

常用算法:通用加法模型(GAM)、广义线性模型(GLM)、多元自适应回归(MARS)、分类树分析(CTA)、广义增强模型(GBM)、最大熵(Maxent)、人工神经网络(ANN)、随机森林(RF)、支持向量机(SVM)

章节目标:掌握不同算法的原理与参数设置方法

2)物种分布特征模拟

分别基于单一算法与组合算法进行物种分布特征模拟,并读模拟结果。

章节目标:可独立使用R语言完成物种分布特征模拟。

3)效果评价

评价指标:接收操作特征 (ROC) 曲线 (AUC) 下的面积、Cohen 的 Kappa 系数、遗漏率、灵敏度(真阳性率)和特异性(真阴性率)

章节目标:了解不同评价指标计算原理。

4)物种分布特征预测

章节内容与目标:设置不同情景,实现物种适生区预测

专题四、拓展研究

1)物种气候生态位动态量化

以入侵物种互花米草为例,分析量化物种在原产地与入侵地之间的生态位的差异性。主要步骤:二维网格物种地理空间和环境空间的定义、应用核平滑计算二维环境空间的气候密度、通过随机检验方法对原产地和入侵区气候生态位的相似性进行统计检验,量化入侵区相比原产地的气候生态位动态等。

2)物种适生区质心转移

基于物种在不同时空尺度的模拟结果,统计并分析物种适生区变化情况,并在空间上实现质心转移的可视化分析。

专题五、结果分析与论文写作

1)不同算法结果解读、比较

2)论文制图与写作技巧

专题六、案例分析

1)基于单个物种分布模型的案例

2) 基于组合物种分布模型的案例

专题七、课程总结和展望

1)物种分布模型的局限性和未来发展方向

2)学习资源和进一步学习的建议

相关文章:

物种气候生态位动态量化与分布特征模拟

在全球气候快速变化的背景下,理解并预测生物种群如何应对气候变化,特别是它们的地理分布如何变化,已经变得至关重要。利用R语言进行物种气候生态位动态量化与分布特征模拟,不仅可以量化描述物种对环境的需求和适应性,预…...

微服务参数透传实现

说明:在微服务架构中,用户身份经网关验证后,我们可以将用户信息,如ID加入到请求头上。后面的微服务中,可以设置一个拦截器,拦截请求,获取请求头上的用户ID,加入到ThreadLocal中。 最…...

leetcode 767. Reorganize String(重组字符串)

重新排列字符串s中的字母,使得任意两个相邻的字母都不相同。 思路: 让相邻字母不同,能想到的办法是先把相同的字母排列, 然后在相同字母的缝隙中插入另一种字母。 比如"aab", 先把"a a"排出来,再…...

java八股文面试[数据结构]——List和Set的区别

List和Set是用来存放集合的接口,并且二者都继承自接接口Collection List 中的元素存放是有序的,可以存放重复的元素,检索效率较高,插入删除效率较低。 Set 没有存放顺序不能存放重复元素检索效率较低,插入删除效率较…...

脑机接口里程碑!一天2篇Nature!

2023年8月23日,《Nature》期刊一口气发表了两项独立的脑机接口方向的研究。 一项来自加州大学旧金山分校华裔科学家张复伦团队,另一项来自斯坦福大学的神经科学家弗朗西斯威利特(Francis Willett)团队。两项研究都旨在帮助那些因脑损伤和疾病而失去语言能…...

C语言strchr函数

描述 strchr函数用于在一个字符串中查找某个字符的第一次出现的位置。 函数的声明: char * strchr(const char *s, int c); 其中,s是要进行查找的字符串,c是要查找的字符。函数返回指向第一次出现字符 c 的指针,如果未找到&…...

Linux下的Shell基础——Shell概述和入门(一)

前言: Shell还是一个功能相当强大的编程语言,易编写、易调试、灵活性强。为了方便后续的学习,我们需要学习在Linux系统下的Shell编程 目录 一、Shell概述 1.Linux 提供的 Shell 解析器有 2. 默认的解析器是 bash 二、Shell 脚本入门 1.脚…...

当你在浏览器中输入了网址访问时产生了哪些技术步骤

当你在浏览器中输入了网址访问时产生了哪些技术步骤 前段时间在知乎上了看一些网络方面的知识,刚好小编自己也是从事这一块的相关工作由对网络方面有一定的了解。今天我们来讲讲,当你在浏览器中输入本站域名并回车后,这背后到底发生来什么事…...

嵌入式Linux人脸检测libfacedetection

人脸检测 此库依赖Opencv,所以首先要移植Opencv到板子上。 笔者使用LVGL搭建了一个界面,界面有些卡顿(主要原因是文件存取较慢),演示效果如下: OpenCV 首先要交叉编译Opencv 参考:https://…...

Hugo托管到Github Pages

Github通过其Github Pages服务可以user、project或organization提供免费快速的静态托管,同时使用Github Actions自动化开发工作流和构建。 1.创建Github仓库 可见性为public。 命名为username.github.io,username为你的Github用户名。 2.添加远程仓库…...

Python经典面试题——在txt里面添加字段和数据

1. 问题: 如何在txt中实现第一行的字段加一个"test",如果第二行开始有数据,在每条数据的最后加"ok" 2.条件 提供的txt文本如下 时间--地区--人口---降雨量----- 20220101--北京--200--0.5----- 20230101--成都--100--0.55----- …...

【观察】打造以AI为导向的基础设施,联想锚定AI算力“主航道”

毫无疑问,人工智能对人类社会来说并不是一项简单的技术革命,它象征着一个时代的到来,如同工业时代之于农业时代一样,会带来天翻地覆的变革,影响人类社会百年、甚至千年的进程。 而AI算力对于推动人工智能应用的重要性毋…...

预防缓存穿透工具类

1. 前言 缓存穿透大家都知道,这里简单过一下 缓存和数据库中都没有的数据,而用户不断发起请求。比如查询id -1 的值 想着很多面向C端的查询接口,可能都需要做一下缓存操作,这里简单写了个自定义注解,将查询结果(包含…...

会员管理系统实战开发教程04-会员开卡

我们已经用3篇篇幅介绍了会员管理的功能,接着就要开发会员的业务。通常我们开通会员之后需要给会员开通会员卡,一个会员可以有多张会员卡。 在数据源设计的时候,像这种一个会员有多张会员卡的,我们称之为一对多的关系&#xff0c…...

数据结构(2)

冒泡排序: 1.比较相邻的两个元素。如果前一个元素比后一个元素大,则交换两者位置。 2.对每一对相邻元素做相同工作,从第一对元素到最后一对元素,最后的一个元素就是最大的元素。 for(int ia.length-1;i>0;i--){for (int j 0…...

使用ELK(ES+Logstash+Filebeat+Kibana)收集nginx的日志

文章目录 Nginx日志格式修改配置logstash收集nginx日志引入Redis收集日志写入redis从redis中读取日志 引入FilebeatFilebeat简介Filebeat安装和配置 配置nginx转发ES和kibanaELK设置账号和密码 书接上回:《ELK中Logstash的基本配置和用法》 Nginx日志格式修改 默认…...

TDengine server连接遇到的坑

一、TDengine安装 TDengine目前只有linux版本的server端,安装教程参考 https://zhuanlan.zhihu.com/p/302413259 二、TDengine连接 TDengine连接目前支持两种方式,一种是原生连接,该方法的默认端口号为6030;另一种是REST API连…...

什么是NetDevOps

NetDevOps 是一种新兴的方法,它结合了 NetOps 和 DevOps 的流程,即将网络自动化集成到开发过程中。NetDevOps 的目标是将虚拟化、自动化和 API 集成到网络基础架构中,并实现开发和运营团队之间的无缝协作。 开发运营(DevOps&…...

中小金融机构数字化转型最大的挑战是什么?

中国银保监会办公厅印发的《关于银行业保险业数字化转型的指导意见》强调,银行保险机构要加强顶层设计和统筹规划,科学制定数字化转型战略,统筹推进工作,并从战略规划与组织流程建设、业务经营管理数字化、数据能力建设、科技能力…...

Facebook HiPlot “让理解高维数据变得容易”

在这个全球信息化的时代,数据量呈爆炸式增长,数据的复杂性也是如此。如何有效地处理高维数据并找到隐藏在其中的相关性和模式是一个严峻的挑战。近年来,可视化和可视化分析已被应用于该任务,并取得了一些积极成果。Facebook的新Hi…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...

​​企业大模型服务合规指南:深度解析备案与登记制度​​

伴随AI技术的爆炸式发展&#xff0c;尤其是大模型&#xff08;LLM&#xff09;在各行各业的深度应用和整合&#xff0c;企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者&#xff0c;还是积极拥抱AI转型的传统企业&#xff0c;在面向公众…...

【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解

一、前言 在HarmonyOS 5的应用开发模型中&#xff0c;featureAbility是旧版FA模型&#xff08;Feature Ability&#xff09;的用法&#xff0c;Stage模型已采用全新的应用架构&#xff0c;推荐使用组件化的上下文获取方式&#xff0c;而非依赖featureAbility。 FA大概是API7之…...