高精度运算(加减乘除乘法)
所谓高精度,就是大数的运算,这个大数可能是要远远超过现有数据类型的最大范围。如果我们想进行这样的运算,就要掌握计算的原理——竖式运算。`
加法
我们这里先简单考虑非负数的加法,竖式这么列对吧:
①存储
我们如何储存过长的数呢?可以用数组存储。怎么才能将各个数位上的数放到数组里面呢?这里,我们可以使用字符串。
我们使用逆序储存,这样会比较方便,后面可以在result数组中反向输出。
int a[241]=,b[241],result[242],l1=0,l2=0;
string c,d;
cin>>c>>d;
// 第一步读取整数
for(int i=c.size()-1;i>=0;i--){a[l1++]=c[i]-'0';
}
for(int i=d.size()-1;i>=0;i--){b[l2++]=d[i]-'0';
}
同时,这里l1表示第一个加数的长度,l2表示第二个加数的长度。
②模拟加法运算
接着,模拟运算:
// 第二步加法计算int l=max(l1,l2)for(int i=0;i<l;i++){result[i]+=(a[i]+b[i])%10;result[i+1]+=(a[i]+b[i])/10;}
当我们进行加法运算时,每一位的结果是由两个部分组成的:当前位的数字和从低位“进”来的数字。例如,当我们计算23 + 18时,个位的结果是1,这个1就是从低位“进”来的,而2和3相加的结果是5,这个5就是当前位的数字。
在计算机中,当我们进行高精度计算时,通常会把每个数字拆分成多个位(如一个8位数字可以拆分成个位、十位、百位等),然后逐位进行加法运算。为了得到每个位的正确结果,我们需要考虑从低位“进”来的数字。
例如,如果我们有两个8位数字1234和5678,我们不能直接把它们相加,因为结果会超过8位。正确的做法是逐位进行加法运算:
1 + 6 = 7,没有进位,所以结果的个位就是7
2 + 7 = 9,进位1,所以结果的十位就是9 + 1 = 09
3 + 8 = 11,进位1,所以百位的结果是11 + 1 = 01
4 + 5 = 9,进位1,所以千位的结果是09 + 1 = 009
这样,我们就可以得到最终的结果:0097。
在上面的程序中,“进位”的思想体现在每次加法运算时都考虑了前一位的进位。通过这种方式,我们可以得到正确的高精度结果。
③反向输出:
for(int i=(x>y?x:y);i>=0;i--){cout<<result[i];
}
完整代码:
#include <iostream>
using namespace std;
int main(){// 高精度加法 240位内,调整数组大小可以扩大位数 int a[241]={},b[241]={},result[242]={},l1=0,l2=0;string c,d;cin>>c>>d;// 第一步读取整数for(int i=c.size()-1;i>=0;i--){a[l1++]=c[i]-'0';}for(int i=d.size()-1;i>=0;i--){b[l2++]=d[i]-'0';}int l=max(l1,l2); // 第二步加法计算for(int i=0;i<l;i++){result[i]+=(a[i]+b[i])%10;result[i+1]+=(a[i]+b[i])/10;}for(int i=l;i>=0;i--){cout<<result[i];}return 0;
}
减法
不说什么了,与上同理
#include <iostream>
using namespace std;
int main(){string s1,s2;int a[241]={},b[241]={},result[241]={},k=0,t;cin>>s1>>s2;// 考虑几种特殊情况if(s1==s2){cout<<0;return 0;}if(s1.size()<s2.size()||s1.size()==s2.size()&&s1<s2){cout<<"-";swap(s1,s2);}// 存储数据for(int i=0;i<s1.size();i++){a[s1.size()-i-1]=s1[i]-'0';}for(int i=0;i<s2.size();i++){b[s2.size()-i-1]=s2[i]-'0';}// 模拟竖式的算法for(int i=0;i<(s1.size()>s2.size()?s1.size():s2.size());i++){t=10-b[i]+a[i]+result[k++];if(t<10) result[k]--; // 退位,在后面一位减去1result[k-1]=t%10;}// 前面可能有0,从第一个不是0的数开始输出for(int i=k-1;i>=0;i--){if(result[i]>0){t=i; // 记录第一个不是0的数break;}}// 输出for(int i=t;i>=0;i--){cout<<result[i];}return 0;
}
放到草稿纸上,想想就明白了。
乘法
高精度乘单精度
我们用单精度去乘高精度的每一位,然后累加。
#include <iostream>
using namespace std;
int main(){// 高精度乘单精度(不超过10000)int a[251]={};string s1;int b;cin>>s1>>b;for(int i=0;i<s1.size();i++){a[i]=s1[s1.size()-i-1]-'0';}// 按位相乘for(int i=0;i<s1.size();i++){a[i]=a[i]*b;}// 处理进位for(int i=0;i<s1.size()+4;i++){if(a[i]>=10){a[i+1]+=a[i]/10;a[i]%=10;}}// 获取第一个不是0的数int point=0;for(int i=s1.size()+4;i>=0;i--){if(a[i]!=0){point=i;break;}}for(int i=point;i>=0;i--){cout<<a[i];}return 0;
}
高精度乘高精度
最难的地方,需要找找规律!
#include <iostream>
using namespace std;
int main(){// 高精度乘高精度string s1,s2;int a[251],b[251],c[503]={};cin>>s1>>s2;for(int i=0;i<s1.size();i++) a[i]=s1[s1.size()-i-1]-'0';for(int i=0;i<s2.size();i++) b[i]=s2[s2.size()-i-1]-'0';for(int i=0;i<s1.size();i++){for(int j=0;j<s2.size();j++){// ↓ 这里是 +=c[i+j]+=a[i]*b[j];// 进位if(c[i+j]>=10){c[i+j+1]+=c[i+j]/10;c[i+j]%=10;}}}int p=0;// 找到不是0的数for(int i=s1.size()+s2.size()-1;i>=0;i--){if(c[i]!=0){p=i;break;}}// 从p开始输出for(int i=p;i>=0;i--){cout<<c[i];}return 0;
}
除法
#include <iostream>
using namespace std;
int main(){int a,b,n,t=0,c[1001];cin>>a>>b>>n;cout<<a/b<<".";a=(a%b)*10;for(int i=0;i<n;i++){c[t++]=a/b;a=(a%b)*10;}for(int i=0;i<t;i++){cout<<c[i];}return 0;
}
这个程序首先接收三个输入:两个整数a和b以及一个整数n,它们分别代表被除数、除数和小数的位数。
然后程序计算出a除以b的商并输出,然后保留这个商的余数。这个余数就是小数点后的第一位。
接着,程序进入一个for循环,该循环执行n次。在每次循环中,它将余数除以b(实际上是一个乘以10的操作),得到下一位小数,然后将这个值存储在数组c中。然后再次保留这个新得到的余数。
最后,程序再输出数组c中的所有值,这些值就是小数a/b的前n位小数。
这个程序使用了小学奥数中的知识:如果你要得到一个数的n位小数,你可以不断地对余数乘以10,然后除以除数,直到得到n位小数为止。
乘方(2的n次方)
思路是高精度乘单精度,单精度的永远是2,然后循环。
#include <iostream>
using namespace std;
int main(){/*高精度2的乘方思路:高精度*单精度2,循环n次*/int a[251]={1},n,len=1;cin>>n;for(int i=1;i<=n;i++){// 按位相乘for(int j=0;j<len;j++){a[j]*=2;}// 处理进位for(int j=0;j<len;j++){if(a[j]>=10){a[j+1]+=a[j]/10;a[j]%=10;}}if(a[len]>0) len++;}for(int i=len-1;i>=0;i--){cout<<a[i];}return 0;
}
1.创建一个长度为251的数组a,并将第一个元素初始化为1。这个数组用来存储每一位的数字。
2.读入一个整数n,表示要计算2的n次方。
3.使用一个外层循环,从1到n进行迭代。在每次循环中,执行以下步骤:
1)使用一个内层循环,从0到len-1进行迭代。这个循环的作用是将数组a中的每一位乘以2。
2)再使用一个内层循环,从0到len-1进行迭代。这个循环的作用是处理进位。如果当前位乘以2之后超过了10,就需要向下一个位置进位。具体做法是,将当前位置除以10的结果加到下一个位置上,然后将当前位置取模10,得到新的当前位置的值。
3)如果处理完所有位置之后,最高位(位置len)的值仍然大于0,就将len加1,表示数组a的长度还需要增加一位。
4.最后,使用一个倒序循环,从len-1到0进行迭代。这个循环的作用是将数组a中的每一位输出到屏幕上。
相关文章:
高精度运算(加减乘除乘法)
所谓高精度,就是大数的运算,这个大数可能是要远远超过现有数据类型的最大范围。如果我们想进行这样的运算,就要掌握计算的原理——竖式运算。 加法 我们这里先简单考虑非负数的加法,竖式这么列对吧: ①存储 我们如何…...
Mysql数据库技术知识整理
Mysql的知识点目录 重点:架构,引擎,索引,锁机制,事务机制,日志机制,集群,调优 3、Mysql索引 索引概念 覆盖索引: 条件列和结果列都在索引中索引下推: 查询会先过滤条件列,然后回表查数据最左前缀匹配&am…...
SpringBoot整合Mybatis 简单试用
1. 导入依赖 我使用MySQL,需要导入MySQL的驱动依赖此外要在SpringBoot中使用Mybatis,则需要导入Mybatis启动器 <dependency><groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifact…...
SpringBoot案例-配置文件-yml配置文件
配置格式 SpringBoot提供了多种属性配置方式 application.propertiesapplication.ymlapplication.yaml常见配置文件格式对比 XML(臃肿) <configuration><database><host>localhost</host><port>3306</port><use…...
Web Components
Web Components标准非常重要的一个特性是,它使开发者能够将HTML页面的功能封装为custom elements(自定义标签),可以使用CustomElementRegistry来管理自定义标签 <script>//1、创建自定义标签class NewElement extends HTML…...
IT运维软件的费用是多少?
正常一套IT运维软件费用一般在5千-50万之间不等,而且分为一次性付费或年付费模式,付费方式导致的价格也不同。 正常情况下IT运维软件的具体价格,是需要根据企业的实际需求来进行综合评估,一般来说,影响具体价格费用有以…...
基于Three.js的WebXR渲染入门
1、Three.js 渲染管线快速概览 我不会花太多时间讨论 Three.JS 渲染管道的工作原理,因为它在互联网上有详细记录(例如,此链接)。 我将在下图中列出基础知识,以便更容易理解各个部分的去向。 2、WebXR 设备 API 入门 在我们深入了解 WebXR API 本身之前,您应该知道 WebX…...
resource doesn‘t have a corresponding Go package.
resource doesnt have a corresponding Go package. GO这个鬼东西不能直接放src下。 ************ Building Go project: ProjectGoTest ************with GOPATH: D:\Go;D:\eclipse-jee-oxygen-2-win32-x86_64\workspace\ProjectGoTest >> Running: D:\Go\bin\go.exe …...
【微服务】微服务调用原理及服务治理
本文通过图文结合,简要讲述微服务的调用原理,以及服务治理的相关概念。 1.微服务的调用原理 举个栗子:你去会所洗脚。首先,技师肯定要先去会所应聘,通过之后,会所会记录该技师的信息和技能,然后…...
【在Windows下搭建Tomcat HTTP服务】
文章目录 前言1.本地Tomcat网页搭建1.1 Tomcat安装1.2 配置环境变量1.3 环境配置1.4 Tomcat运行测试1.5 Cpolar安装和注册 2.本地网页发布2.1.Cpolar云端设置2.2 Cpolar本地设置 3.公网访问测试4.结语 前言 Tomcat作为一个轻量级的服务器,不仅名字很有趣࿰…...
前端Vue3框架知识点大全
Vue.js是一种流行的JavaScript前端框架,它的第三个版本Vue3带来了许多令人兴奋的新特性和改进。 1、响应式数据: Vue 3采用了基于Proxy的响应式系统,相比Vue 2中的Object.defineProperty,Proxy提供了更强大和灵活的拦截器&#…...
C语言练习2(巩固提升)
C语言练习2 选择题 前言 “志之所趋,无远弗届,穷山距海,不能限也。”对想做爱做的事要敢试敢为,努力从无到有、从小到大,把理想变为现实。要敢于做先锋,而不做过客、当看客,让创新成为青春远航的…...
Vulnhub: DriftingBlues: 1靶机
kali:192.168.111.111 靶机:192.168.111.215 信息收集 端口扫描 nmap -A -sC -v -sV -T5 -p- --scripthttp-enum 192.168.111.215 80端口首页源码 访问noteforkingfish.txt,发现为Ook!加密的密文 解密后提示需要用户eric和修改hosts文件&…...
Android项目如何上传Gitee仓库
前言 最近Android项目比较多,我都是把Android项目上传到Gitee中去,GitHub的话我用的少,可能我还是更喜欢Gitee吧,毕竟Gitee仓库用起来更加方便 一. 创建Gitee仓库 1. 先创建一个Gitee账号,然后登录上去 2. 创建Androi…...
MySQL——基础——联合查询
联合查询 - union,union all 对于union查询,就是把多次查询的结果合并起来,形成一个新的查询结果集 SELECT 字段列表 FROM 表A ... UNION [ALL] SELECT 字段列表 FROM 表B ...; 1.将薪资低于5000的员工,和 年龄大于50的员工全部查询出来 use itcast; select * from participat…...
Vue3+Vite 初始化Cesium
Vue3Vite 初始化Cesium 安装依赖 yarn add cesium yarn add vite-plugin-cesium -D加载vite-plugin-cesium插件 import { defineConfig } from vite import vue from vitejs/plugin-vue import cesium from vite-plugin-cesium;export default defineConfig({plugins: [vue(…...
c++内存地址分配
...
改进YOLO系列:9.添加S2Attention注意力机制
添加S2Attention注意力机制 1. S2Attention注意力机制论文2. S2Attention注意力机制原理3. S2Attention注意力机制的配置3.1common.py配置3.2yolo.py配置3.3yaml文件配置1. S2Attention注意力机制论文 论文题目:S 2 -MLPV2: IMPROVED SPATIAL-SHIFT MLP ARCHITECTURE…...
微服务Feign组件远程调用自定义解码器
Feign远程调用响应结果格式 public class Result<T> {/*** 响应码,200为成功*/private Integer code;/*** 响应信息*/private String message;/*** 响应的具体对象*/private T data; }自定义Feign解码器 Component // 注入Spring的IOC容器中,所有…...
FairyGUI编辑器自定义菜单扩展插件
本文涉及到的软件有:FairyGUI,VSCode 代码环境涉及到了:Lua VSCode插件:EmmyLua 在编写FairyGUI编辑器菜单前,了解一下FairyGUIEditor的API会有效的帮助我们解决很多问题。FairyGUI的扩展是通过编辑器自带的插件功能…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...
LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
4. TypeScript 类型推断与类型组合
一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式,自动确定它们的类型。 这一特性减少了显式类型注解的需要,在保持类型安全的同时简化了代码。通过分析上下文和初始值,TypeSc…...
【SpringBoot自动化部署】
SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一,能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时,需要添加Git仓库地址和凭证,设置构建触发器(如GitHub…...
字符串哈希+KMP
P10468 兔子与兔子 #include<bits/stdc.h> using namespace std; typedef unsigned long long ull; const int N 1000010; ull a[N], pw[N]; int n; ull gethash(int l, int r){return a[r] - a[l - 1] * pw[r - l 1]; } signed main(){ios::sync_with_stdio(false), …...
