当前位置: 首页 > news >正文

高精度运算(加减乘除乘法)

所谓高精度,就是大数的运算,这个大数可能是要远远超过现有数据类型的最大范围。如果我们想进行这样的运算,就要掌握计算的原理——竖式运算。`

加法

我们这里先简单考虑非负数的加法,竖式这么列对吧:

①存储

我们如何储存过长的数呢?可以用数组存储。怎么才能将各个数位上的数放到数组里面呢?这里,我们可以使用字符串
我们使用逆序储存,这样会比较方便,后面可以在result数组中反向输出。


int a[241]=,b[241],result[242],l1=0,l2=0;
string c,d;
cin>>c>>d;
// 第一步读取整数
for(int i=c.size()-1;i>=0;i--){a[l1++]=c[i]-'0';
}
for(int i=d.size()-1;i>=0;i--){b[l2++]=d[i]-'0';
}

同时,这里l1表示第一个加数的长度,l2表示第二个加数的长度。

②模拟加法运算

接着,模拟运算:

	// 第二步加法计算int l=max(l1,l2)for(int i=0;i<l;i++){result[i]+=(a[i]+b[i])%10;result[i+1]+=(a[i]+b[i])/10;}

当我们进行加法运算时,每一位的结果是由两个部分组成的:当前位的数字和从低位“进”来的数字。例如,当我们计算23 + 18时,个位的结果是1,这个1就是从低位“进”来的,而2和3相加的结果是5,这个5就是当前位的数字。

在计算机中,当我们进行高精度计算时,通常会把每个数字拆分成多个位(如一个8位数字可以拆分成个位、十位、百位等),然后逐位进行加法运算。为了得到每个位的正确结果,我们需要考虑从低位“进”来的数字。

例如,如果我们有两个8位数字1234和5678,我们不能直接把它们相加,因为结果会超过8位。正确的做法是逐位进行加法运算:

1 + 6 = 7,没有进位,所以结果的个位就是7
2 + 7 = 9,进位1,所以结果的十位就是9 + 1 = 09
3 + 8 = 11,进位1,所以百位的结果是11 + 1 = 01
4 + 5 = 9,进位1,所以千位的结果是09 + 1 = 009

这样,我们就可以得到最终的结果:0097。

在上面的程序中,“进位”的思想体现在每次加法运算时都考虑了前一位的进位。通过这种方式,我们可以得到正确的高精度结果。

③反向输出:

for(int i=(x>y?x:y);i>=0;i--){cout<<result[i];
}

完整代码:

#include <iostream>
using namespace std;
int main(){// 高精度加法 240位内,调整数组大小可以扩大位数 int a[241]={},b[241]={},result[242]={},l1=0,l2=0;string c,d;cin>>c>>d;// 第一步读取整数for(int i=c.size()-1;i>=0;i--){a[l1++]=c[i]-'0';}for(int i=d.size()-1;i>=0;i--){b[l2++]=d[i]-'0';}int l=max(l1,l2); // 第二步加法计算for(int i=0;i<l;i++){result[i]+=(a[i]+b[i])%10;result[i+1]+=(a[i]+b[i])/10;}for(int i=l;i>=0;i--){cout<<result[i];}return 0;
}

减法

不说什么了,与上同理

#include <iostream>
using namespace std;
int main(){string s1,s2;int a[241]={},b[241]={},result[241]={},k=0,t;cin>>s1>>s2;// 考虑几种特殊情况if(s1==s2){cout<<0;return 0;}if(s1.size()<s2.size()||s1.size()==s2.size()&&s1<s2){cout<<"-";swap(s1,s2);}// 存储数据for(int i=0;i<s1.size();i++){a[s1.size()-i-1]=s1[i]-'0';}for(int i=0;i<s2.size();i++){b[s2.size()-i-1]=s2[i]-'0';}// 模拟竖式的算法for(int i=0;i<(s1.size()>s2.size()?s1.size():s2.size());i++){t=10-b[i]+a[i]+result[k++];if(t<10) result[k]--; // 退位,在后面一位减去1result[k-1]=t%10;}// 前面可能有0,从第一个不是0的数开始输出for(int i=k-1;i>=0;i--){if(result[i]>0){t=i; // 记录第一个不是0的数break;}}// 输出for(int i=t;i>=0;i--){cout<<result[i];}return 0;
}

放到草稿纸上,想想就明白了。

乘法

高精度乘单精度

我们用单精度去乘高精度的每一位,然后累加。

#include <iostream>
using namespace std;
int main(){// 高精度乘单精度(不超过10000)int a[251]={};string s1;int b;cin>>s1>>b;for(int i=0;i<s1.size();i++){a[i]=s1[s1.size()-i-1]-'0';}// 按位相乘for(int i=0;i<s1.size();i++){a[i]=a[i]*b;}// 处理进位for(int i=0;i<s1.size()+4;i++){if(a[i]>=10){a[i+1]+=a[i]/10;a[i]%=10;}}// 获取第一个不是0的数int point=0;for(int i=s1.size()+4;i>=0;i--){if(a[i]!=0){point=i;break;}}for(int i=point;i>=0;i--){cout<<a[i];}return 0;
}

高精度乘高精度

最难的地方,需要找找规律!

#include <iostream>
using namespace std;
int main(){// 高精度乘高精度string s1,s2;int a[251],b[251],c[503]={};cin>>s1>>s2;for(int i=0;i<s1.size();i++) a[i]=s1[s1.size()-i-1]-'0';for(int i=0;i<s2.size();i++) b[i]=s2[s2.size()-i-1]-'0';for(int i=0;i<s1.size();i++){for(int j=0;j<s2.size();j++){//     ↓ 这里是 +=c[i+j]+=a[i]*b[j];// 进位if(c[i+j]>=10){c[i+j+1]+=c[i+j]/10;c[i+j]%=10;}}}int p=0;// 找到不是0的数for(int i=s1.size()+s2.size()-1;i>=0;i--){if(c[i]!=0){p=i;break;}}// 从p开始输出for(int i=p;i>=0;i--){cout<<c[i];}return 0;
}

除法


#include <iostream>
using namespace std;
int main(){int a,b,n,t=0,c[1001];cin>>a>>b>>n;cout<<a/b<<".";a=(a%b)*10;for(int i=0;i<n;i++){c[t++]=a/b;a=(a%b)*10;}for(int i=0;i<t;i++){cout<<c[i];}return 0;
}

这个程序首先接收三个输入:两个整数a和b以及一个整数n,它们分别代表被除数、除数和小数的位数。

然后程序计算出a除以b的商并输出,然后保留这个商的余数。这个余数就是小数点后的第一位。

接着,程序进入一个for循环,该循环执行n次。在每次循环中,它将余数除以b(实际上是一个乘以10的操作),得到下一位小数,然后将这个值存储在数组c中。然后再次保留这个新得到的余数。

最后,程序再输出数组c中的所有值,这些值就是小数a/b的前n位小数。

这个程序使用了小学奥数中的知识:如果你要得到一个数的n位小数,你可以不断地对余数乘以10,然后除以除数,直到得到n位小数为止。

乘方(2的n次方)

思路是高精度乘单精度,单精度的永远是2,然后循环。

#include <iostream>
using namespace std;
int main(){/*高精度2的乘方思路:高精度*单精度2,循环n次*/int a[251]={1},n,len=1;cin>>n;for(int i=1;i<=n;i++){// 按位相乘for(int j=0;j<len;j++){a[j]*=2;}// 处理进位for(int j=0;j<len;j++){if(a[j]>=10){a[j+1]+=a[j]/10;a[j]%=10;}}if(a[len]>0) len++;}for(int i=len-1;i>=0;i--){cout<<a[i];}return 0;
}

1.创建一个长度为251的数组a,并将第一个元素初始化为1。这个数组用来存储每一位的数字。

2.读入一个整数n,表示要计算2的n次方。

3.使用一个外层循环,从1到n进行迭代。在每次循环中,执行以下步骤:
1)使用一个内层循环,从0到len-1进行迭代。这个循环的作用是将数组a中的每一位乘以2。
2)再使用一个内层循环,从0到len-1进行迭代。这个循环的作用是处理进位。如果当前位乘以2之后超过了10,就需要向下一个位置进位。具体做法是,将当前位置除以10的结果加到下一个位置上,然后将当前位置取模10,得到新的当前位置的值。
3)如果处理完所有位置之后,最高位(位置len)的值仍然大于0,就将len加1,表示数组a的长度还需要增加一位。

4.最后,使用一个倒序循环,从len-1到0进行迭代。这个循环的作用是将数组a中的每一位输出到屏幕上。

相关文章:

高精度运算(加减乘除乘法)

所谓高精度&#xff0c;就是大数的运算&#xff0c;这个大数可能是要远远超过现有数据类型的最大范围。如果我们想进行这样的运算&#xff0c;就要掌握计算的原理——竖式运算。 加法 我们这里先简单考虑非负数的加法&#xff0c;竖式这么列对吧&#xff1a; ①存储 我们如何…...

Mysql数据库技术知识整理

Mysql的知识点目录 重点&#xff1a;架构,引擎,索引&#xff0c;锁机制,事务机制,日志机制&#xff0c;集群,调优 3、Mysql索引 索引概念 覆盖索引&#xff1a; 条件列和结果列都在索引中索引下推&#xff1a; 查询会先过滤条件列&#xff0c;然后回表查数据最左前缀匹配&am…...

SpringBoot整合Mybatis 简单试用

1. 导入依赖 我使用MySQL&#xff0c;需要导入MySQL的驱动依赖此外要在SpringBoot中使用Mybatis&#xff0c;则需要导入Mybatis启动器 <dependency><groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifact…...

SpringBoot案例-配置文件-yml配置文件

配置格式 SpringBoot提供了多种属性配置方式 application.propertiesapplication.ymlapplication.yaml常见配置文件格式对比 XML&#xff08;臃肿&#xff09; <configuration><database><host>localhost</host><port>3306</port><use…...

Web Components

Web Components标准非常重要的一个特性是&#xff0c;它使开发者能够将HTML页面的功能封装为custom elements&#xff08;自定义标签&#xff09;&#xff0c;可以使用CustomElementRegistry来管理自定义标签 <script>//1、创建自定义标签class NewElement extends HTML…...

IT运维软件的费用是多少?

正常一套IT运维软件费用一般在5千-50万之间不等&#xff0c;而且分为一次性付费或年付费模式&#xff0c;付费方式导致的价格也不同。 正常情况下IT运维软件的具体价格&#xff0c;是需要根据企业的实际需求来进行综合评估&#xff0c;一般来说&#xff0c;影响具体价格费用有以…...

基于Three.js的WebXR渲染入门

1、Three.js 渲染管线快速概览 我不会花太多时间讨论 Three.JS 渲染管道的工作原理,因为它在互联网上有详细记录(例如,此链接)。 我将在下图中列出基础知识,以便更容易理解各个部分的去向。 2、WebXR 设备 API 入门 在我们深入了解 WebXR API 本身之前,您应该知道 WebX…...

resource doesn‘t have a corresponding Go package.

resource doesnt have a corresponding Go package. GO这个鬼东西不能直接放src下。 ************ Building Go project: ProjectGoTest ************with GOPATH: D:\Go;D:\eclipse-jee-oxygen-2-win32-x86_64\workspace\ProjectGoTest >> Running: D:\Go\bin\go.exe …...

【微服务】微服务调用原理及服务治理

本文通过图文结合&#xff0c;简要讲述微服务的调用原理&#xff0c;以及服务治理的相关概念。 1.微服务的调用原理 举个栗子&#xff1a;你去会所洗脚。首先&#xff0c;技师肯定要先去会所应聘&#xff0c;通过之后&#xff0c;会所会记录该技师的信息和技能&#xff0c;然后…...

【在Windows下搭建Tomcat HTTP服务】

文章目录 前言1.本地Tomcat网页搭建1.1 Tomcat安装1.2 配置环境变量1.3 环境配置1.4 Tomcat运行测试1.5 Cpolar安装和注册 2.本地网页发布2.1.Cpolar云端设置2.2 Cpolar本地设置 3.公网访问测试4.结语 前言 Tomcat作为一个轻量级的服务器&#xff0c;不仅名字很有趣&#xff0…...

前端Vue3框架知识点大全

Vue.js是一种流行的JavaScript前端框架&#xff0c;它的第三个版本Vue3带来了许多令人兴奋的新特性和改进。 1、响应式数据&#xff1a; Vue 3采用了基于Proxy的响应式系统&#xff0c;相比Vue 2中的Object.defineProperty&#xff0c;Proxy提供了更强大和灵活的拦截器&#…...

C语言练习2(巩固提升)

C语言练习2 选择题 前言 “志之所趋&#xff0c;无远弗届&#xff0c;穷山距海&#xff0c;不能限也。”对想做爱做的事要敢试敢为&#xff0c;努力从无到有、从小到大&#xff0c;把理想变为现实。要敢于做先锋&#xff0c;而不做过客、当看客&#xff0c;让创新成为青春远航的…...

Vulnhub: DriftingBlues: 1靶机

kali&#xff1a;192.168.111.111 靶机&#xff1a;192.168.111.215 信息收集 端口扫描 nmap -A -sC -v -sV -T5 -p- --scripthttp-enum 192.168.111.215 80端口首页源码 访问noteforkingfish.txt&#xff0c;发现为Ook!加密的密文 解密后提示需要用户eric和修改hosts文件&…...

Android项目如何上传Gitee仓库

前言 最近Android项目比较多&#xff0c;我都是把Android项目上传到Gitee中去&#xff0c;GitHub的话我用的少&#xff0c;可能我还是更喜欢Gitee吧&#xff0c;毕竟Gitee仓库用起来更加方便 一. 创建Gitee仓库 1. 先创建一个Gitee账号&#xff0c;然后登录上去 2. 创建Androi…...

MySQL——基础——联合查询

联合查询 - union,union all 对于union查询,就是把多次查询的结果合并起来,形成一个新的查询结果集 SELECT 字段列表 FROM 表A ... UNION [ALL] SELECT 字段列表 FROM 表B ...; 1.将薪资低于5000的员工,和 年龄大于50的员工全部查询出来 use itcast; select * from participat…...

Vue3+Vite 初始化Cesium

Vue3Vite 初始化Cesium 安装依赖 yarn add cesium yarn add vite-plugin-cesium -D加载vite-plugin-cesium插件 import { defineConfig } from vite import vue from vitejs/plugin-vue import cesium from vite-plugin-cesium;export default defineConfig({plugins: [vue(…...

c++内存地址分配

...

改进YOLO系列:9.添加S2Attention注意力机制

添加S2Attention注意力机制 1. S2Attention注意力机制论文2. S2Attention注意力机制原理3. S2Attention注意力机制的配置3.1common.py配置3.2yolo.py配置3.3yaml文件配置1. S2Attention注意力机制论文 论文题目:S 2 -MLPV2: IMPROVED SPATIAL-SHIFT MLP ARCHITECTURE…...

微服务Feign组件远程调用自定义解码器

Feign远程调用响应结果格式 public class Result<T> {/*** 响应码&#xff0c;200为成功*/private Integer code;/*** 响应信息*/private String message;/*** 响应的具体对象*/private T data; }自定义Feign解码器 Component // 注入Spring的IOC容器中&#xff0c;所有…...

FairyGUI编辑器自定义菜单扩展插件

本文涉及到的软件有&#xff1a;FairyGUI&#xff0c;VSCode 代码环境涉及到了&#xff1a;Lua VSCode插件&#xff1a;EmmyLua 在编写FairyGUI编辑器菜单前&#xff0c;了解一下FairyGUIEditor的API会有效的帮助我们解决很多问题。FairyGUI的扩展是通过编辑器自带的插件功能…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天&#xff0c;通信网络的角色正变得愈发关键。 2025年6月6日&#xff0c;为期三天的华南国际工业博览会在深圳国际会展中心&#xff08;宝安&#xff09;圆满落幕。作为国内工业通信领域的技术型企业&#xff0c;光路科技&#xff08;Fiberroad&…...

算法打卡第18天

从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并返回这颗 二叉树 。 示例 1: 输入&#xff1a;inorder [9,3,15,20,7…...