当前位置: 首页 > news >正文

Layer Normalization(层规范化)

详细内容在这篇论文:Layer Normalization
训练深度神经网络需要大量的计算,减少计算时间的一个有效方法是规范化神经元的活动,例如批量规范化BN(batch normalization)技术,然而,批量规范化对小批量大小(batch size)敏感并且无法直接应用到RNN中(recurrent neural networks),为了解决上述问题,层规范化LN(Layer Normalization)被提出,不仅能直接应用到RNN,还能显著减少训练时间。与批量归一化不同,层规范化直接根据隐藏层内神经元的总输入估计归一化统计数据,因此不会在训练案例之间引入任何新的依赖关系。

背景

A feed-forward neural network is a non-linear mapping from a input pattern x \mathbf{x} x to an output vector y y y. Consider the l th  l^{\text {th }} lth  hidden layer in a deep feed-forward, neural network, and let a l a^l al be the vector representation of the summed inputs to the neurons in that layer. a i l a_i^l ail是第 l l l层第 i i i个神经元的线性加权输出。 The summed inputs are computed through a linear projection with the weight matrix W l W^l Wl and the bottom-up inputs h l h^l hl given as follows:
a i l = w i l ⊤ h l h i l + 1 = f ( a i l + b i l ) a_i^l=w_i^{l^{\top}} h^l \quad h_i^{l+1}=f\left(a_i^l+b_i^l\right) ail=wilhlhil+1=f(ail+bil)

where f ( ⋅ ) f(\cdot) f() is an element-wise non-linear function(激活函数) and w i l w_i^l wil is the incoming weights to the i t h i^{t h} ith hidden units and b i l b_i^l bil is the scalar bias parameter. The parameters in the neural network are learnt using gradient-based optimization algorithms with the gradients being computed by back-propagation.

Batch Normalization

BN是为了减少协变量偏移提出的,它在训练阶段对隐神经元加权输出进行规范化,例如,对于 l t h l^{th} lth层的 i t h i^{th} ith个加权输出 a i l a_i^l ail,BN根据输入数据的分布进行了缩放
a ˉ i l = g i l σ i l ( a i l − μ i l ) μ i l = E x ∼ P ( x ) [ a i l ] σ i l = E x ∼ P ( x ) [ ( a i l − μ i l ) 2 ] \bar{a}_i^l=\frac{g_i^l}{\sigma_i^l}\left(a_i^l-\mu_i^l\right) \quad \mu_i^l=\underset{\mathbf{x} \sim P(\mathbf{x})}{\mathbb{E}}\left[a_i^l\right] \quad \sigma_i^l=\sqrt{\underset{\mathbf{x} \sim P(\mathbf{x})}{\mathbb{E}}\left[\left(a_i^l-\mu_i^l\right)^2\right]} aˉil=σilgil(ailμil)μil=xP(x)E[ail]σil=xP(x)E[(ailμil)2]

where a ˉ i l \bar{a}_i^l aˉil is normalized summed inputs to the i t h i^{t h} ith hidden unit in the l t h l^{t h} lth layer and g i g_i gi is a gain parameter scaling the normalized activation before the non-linear activation function.

实际中不会计算真正的 μ \mu μ σ \sigma σ,转而去估计一个batch里的 μ \mu μ σ \sigma σ,所以BN要求这个batchsize不能太小。然而,在一些在线学习任务以及超大分布模型中往往需要很小的batchsize。

Layer Normalization

μ l = 1 H ∑ i = 1 H a i l σ l = 1 H ∑ i = 1 H ( a i l − μ l ) 2 \mu^l=\frac{1}{H} \sum_{i=1}^H a_i^l \quad \sigma^l=\sqrt{\frac{1}{H} \sum_{i=1}^H\left(a_i^l-\mu^l\right)^2} μl=H1i=1Hailσl=H1i=1H(ailμl)2

H H H是一个隐藏层中的隐藏单元数量。在LN中,同一个层共享 μ \mu μ σ \sigma σ, but different training cases have different normalization terms. Unlike batch normalization, layer normalization does not impose any constraint on the size of a mini-batch and it can be used in the pure online regime with batch size 1.

In a standard RNN, the summed inputs in the recurrent layer are computed from the current input x t \mathbf{x}^t xt and previous vector of hidden states h t − 1 \mathbf{h}^{t-1} ht1 which are computed as a t = W h h h t − 1 + W x h x t \mathbf{a}^t=W_{h h} h^{t-1}+W_{x h} \mathbf{x}^t at=Whhht1+Wxhxt. The layer normalized recurrent layer re-centers and re-scales its activations using the extra normalization terms :
h t = f [ g σ t ⊙ ( a t − μ t ) + b ] μ t = 1 H ∑ i = 1 H a i t σ t = 1 H ∑ i = 1 H ( a i t − μ t ) 2 \mathbf{h}^t=f\left[\frac{\mathbf{g}}{\sigma^t} \odot\left(\mathbf{a}^t-\mu^t\right)+\mathbf{b}\right] \quad \mu^t=\frac{1}{H} \sum_{i=1}^H a_i^t \quad \sigma^t=\sqrt{\frac{1}{H} \sum_{i=1}^H\left(a_i^t-\mu^t\right)^2} ht=f[σtg(atμt)+b]μt=H1i=1Haitσt=H1i=1H(aitμt)2

where W h h W_{h h} Whh is the recurrent hidden to hidden weights and W x h W_{x h} Wxh are the bottom up input to hidden weights. ⊙ \odot is the element-wise multiplication between two vectors. b \mathbf{b} b and g \mathbf{g} g are defined as the bias and gain parameters of the same dimension as h t \mathbf{h}^t ht.

在标准RNN中存在梯度爆炸和消失问题,用了LN之后会更加稳定。
贴两个图便于理解:
在这里插入图片描述
在这里插入图片描述

视频讲解可以参考:What is Layer Normalization? | Deep Learning Fundamentals

代码实现

这边贴一个Restormer中的LN层的实现
首先定义两个函数用于reshape。4d到3d不需要参数,因为只需要把已有的两个维度合并;3d到4d需要参数,因为需要把一个维度分成两个维度

def to_3d(x):return rearrange(x, 'b c h w -> b (h w) c')def to_4d(x,h,w):return rearrange(x, 'b (h w) c -> b c h w',h=h,w=w)

定义一个没有bias的LN层,weight是可学习的参数,所以用 n n . P a r a m e t e r nn.Parameter nn.Parameter包装

# 没有bias的LayerNorm层
class BiasFree_LayerNorm(nn.Module):def __init__(self, normalized_shape):super(BiasFree_LayerNorm, self).__init__()if isinstance(normalized_shape, numbers.Integral):normalized_shape = (normalized_shape,)normalized_shape = torch.Size(normalized_shape)assert len(normalized_shape) == 1self.weight = nn.Parameter(torch.ones(normalized_shape))self.normalized_shape = normalized_shapedef forward(self, x):#x的维度(batch_size, height x width, channels)#sigma的维度(batch_size, height x width, 1)sigma = x.var(-1, keepdim=True, unbiased=False)return x / torch.sqrt(sigma+1e-5) * self.weight

定义一个有bias的LN层,同样的,weight和bias都是可学习的参数

class WithBias_LayerNorm(nn.Module):def __init__(self, normalized_shape):super(WithBias_LayerNorm, self).__init__()#如果输入的normalized_shape是个整数,则化为元组if isinstance(normalized_shape, numbers.Integral):normalized_shape = (normalized_shape,)normalized_shape = torch.Size(normalized_shape)assert len(normalized_shape) == 1self.weight = nn.Parameter(torch.ones(normalized_shape))#比上面多定义一个biasself.bias = nn.Parameter(torch.zeros(normalized_shape))self.normalized_shape = normalized_shapedef forward(self, x):mu = x.mean(-1, keepdim=True)sigma = x.var(-1, keepdim=True, unbiased=False)return (x - mu) / torch.sqrt(sigma+1e-5) * self.weight + self.bias#这边加了bias

把上面的函数包装起来,定义一个统一的层规范化函数

class LayerNorm(nn.Module):def __init__(self, dim, LayerNorm_type):super(LayerNorm, self).__init__()if LayerNorm_type =='BiasFree':self.body = BiasFree_LayerNorm(dim)else:self.body = WithBias_LayerNorm(dim)def forward(self, x):h, w = x.shape[-2:]return to_4d(self.body(to_3d(x)), h, w)

相关文章:

Layer Normalization(层规范化)

详细内容在这篇论文:Layer Normalization 训练深度神经网络需要大量的计算,减少计算时间的一个有效方法是规范化神经元的活动,例如批量规范化BN(batch normalization)技术,然而,批量规范化对小批…...

redisson参数配置

文章目录 pom配置链接配置建议 pom <!-- 引入spring-data-redis组件 --> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId><exclusions><!-- 因springboot2.x…...

【基于Arduino的仿生蚂蚁机器人】

【基于Arduino的仿生蚂蚁机器人】 1. 概述2. Arduino六足位移台–蚂蚁机器人3D模型3. 3D 打印零件4. 组装Arduino六足位移台5. Arduino蚂蚁机器人电路图6. 为Arduino Hexapod设计PCB7. 组装电路板8. 系统代码9. Arduino蚂蚁机器人安卓应用程序在本教程中,我将向您展示如何构建…...

angular12里面FormGroup做多个项目的相关check

FromFroup在鼠标失去焦点时做相关check&#xff0c;可以在group方法第二个参数的位置加一个对象参数 { validator: this.checkPasswords } 在Angular 12中&#xff0c;可以使用formGroup来进行两个密码是否一致的检查。以下是一个示例&#xff1a; 首先&#xff0c;在组件的…...

TypeScript 的发展与基本语法

目录 一、为什么什么是TypeScript&#xff1f; 1、发展历史 2、typescript与javascript 3、静态类型的好处 二、基础语法 1、基础数据类型 2、补充类型 3、泛型 4、泛型的高级语法 5、类型别名&类型断言 6、字符串/数字 字面量 三、高级类型 1、联合/交叉类型…...

macOS - 上编译运行 risc-v (spike)

文章目录 一、说明二、安装步骤三、测试 一、说明 本文根据以下文章改编&#xff1a; RISC-V 环境配置 https://decaf-lang.github.io/minidecaf-tutorial/docs/step0/riscv_env.html 相关链接&#xff1a; riscv-gnu-toolchain GNU toolchain for RISC-V, including GCC ht…...

Linux--线程地址空间

1.程序地址空间 先来就看这张图 这是一张程序地址分布的图&#xff0c;通过一段代码来证明地址空间的分布情况 编译结果&#xff1a; 可以看出的是&#xff0c;父子进程中对于同一个变量打印的地址是一样的&#xff0c;这是因为子进程以父进程为模板&#xff0c;因为都没有对数…...

华为OD机试 - 最佳植树距离 - 二分查找(Java 2023 B卷 100分)

目录 一、题目描述二、输入描述三、输出描述四、备注说明五、二分查找六、解题思路七、Java算法源码八、效果展示1、输入2、输出3、说明 一、题目描述 按照环保公司要求&#xff0c;小明需要在沙化严重的地区进行植树防沙工作&#xff0c;初步目标是种植一条直线的树带。 由于…...

RNN+LSTM正弦sin信号预测 完整代码数据视频教程

视频讲解:RNN+LSTM正弦sin信号预测_哔哩哔哩_bilibili 效果演示: 数据展示: 完整代码: import torch import torch.nn as nn import torch.optim as optim import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.preprocessing import…...

如何自己实现一个丝滑的流程图绘制工具(四)bpmn-js开启只读状态

背景 流程图需要支持只读状态和编辑状态 翻看官方案例源码&#xff0c;扒拉到了禁用的js代码 DisableModeling.js const TOGGLE_MODE_EVENT toggleMode const HIGH_PRIORITY 10001export default function DisableModeling(eventBus,contextPad,dragging,directEditing,e…...

字节跳动 Git 的正确使用姿势与最佳实践

版本控制Git 黑马&尚硅谷 Git的前世今生 方向介绍 为什么要学习Git 1.0 Git是什么 1.1 版本控制 1.1.1 本地版本控制 1.1.2 集中版本控制 1.1.3 分布式版本控制 我们已经把三个不同的版本控制系统介绍完了&#xff0c;Git 作为分布式版本控制工具&#xff0c; 虽然目前来讲…...

龙迅LT7911UX TYPE-C/DP转MIPI/LVDS,内有HDCP

1. 描述 LT7911UX是一种高性能的Type-C/DP1.4a到MIPI或LVDS芯片。HDCP RX作为HDCP中继器的上游端&#xff0c;可以与其他芯片的HDCP TX协同工作&#xff0c;实现中继器的功能。 对于DP1.4a输入&#xff0c;LT7911UX可以配置为1/2/4车道。自适应均衡使其适用于长电缆应用&#…...

Spearman Footrule距离

Spearman Footrule距离是一种用于衡量两个排列之间差异的指标。它衡量了将一个排列变换为另一个排列所需的操作步骤&#xff0c;其中每个操作步骤都是交换相邻元素。具体而言&#xff0c;Spearman Footrule距离是每个元素在两个排列中的排名差的绝对值之和。 这个指标的名字中…...

docker 安装 Wordpress 用lnmp搭建出现的故障

第一个故障就是mysql出现的故障了 你起mysql镜像是这么起的导致pid号用不了 docker run --namemysql -d --privileged --device-write-bps /dev/sda:10M -v /usr/local/mysql --net mynetwork --ip 172.20.0.20 mysql:lnmp 解决方法 docker run --namemysql -d --privilege…...

【C++入门到精通】C++入门 —— 继承(基类、派生类和多态性)

阅读导航 前言一、继承的概念及定义1. 继承的概念2.继承的定义⭕定义格式⭕继承关系和访问限定符⭕继承基类成员访问方式的变化 二、基类和派生类对象赋值转换三、继承中的作用域四、派生类的默认成员函数五、继承与友元六、继承与静态成员七、复杂的菱形继承及菱形虚拟继承⭕单…...

【Spring框架】Spring事务的介绍与使用方法

⚠️ 再提醒一次&#xff1a;Spring 本身并不实现事务&#xff0c;Spring事务 的本质还是底层数据库对事务的支持。你的程序是否支持事务首先取决于数据库 &#xff0c;比如使用 MySQL 的话&#xff0c;如果你选择的是 innodb 引擎&#xff0c;那么恭喜你&#xff0c;是可以支持…...

七夕特别篇 | 浪漫的Bug

文章目录 前言一、迷失的爱情漩涡&#xff08;多线程中的错误同步&#xff09;1.1 Bug 背景1.2 Bug 分析1.3 Bug 解决 二、心形积分之恋&#xff08;心形面积计算中的数值积分误差&#xff09;1.1 Bug 背景1.1.1 背景1.1.2 数学模型 1.2 Bug 分析1.2.1 初始代码1.2.2 代码工作流…...

数据结构双向链表

Hello&#xff0c;好久不见&#xff0c;今天我们讲链表的双向链表&#xff0c;这是一个很厉害的链表&#xff0c;带头双向且循环&#xff0c;学了这个链表&#xff0c;你会发现顺序表的头插头删不再是一个麻烦问题&#xff0c;单链表的尾插尾删也变得简单起来了&#xff0c;那废…...

解决政务审计大数据传输难题!镭速传输为政务行业提供解决方案

政务行业是国家治理的重要组成部分&#xff0c;涉及到国家安全、社会稳定、民生福祉等方面。随着信息技术的快速发展和革新&#xff0c;政务信息化也迎来了新一轮的升级浪潮。国家相继出台了《国家信息化发展战略纲要》《“十三五”国家信息化规划》《“十四五”推进国家政务信…...

redis 7高级篇1 redis的单线程与多线程

一 redis单线程与多线程 1.1 redis单线程&多线程 1.redis的单线程 redis单线程主要是指Redis的网络IO和键值对读写是由一个线程来完成的&#xff0c;Redis在处理客户端的请求时包括获取 (socket 读)、解析、执行、内容返回 (socket 写) 等都由一个顺序串行的主线程处理…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...