当前位置: 首页 > news >正文

计算机竞赛 基于大数据的时间序列股价预测分析与可视化 - lstm

文章目录

  • 1 前言
  • 2 时间序列的由来
    • 2.1 四种模型的名称:
  • 3 数据预览
  • 4 理论公式
    • 4.1 协方差
    • 4.2 相关系数
    • 4.3 scikit-learn计算相关性
  • 5 金融数据的时序分析
    • 5.1 数据概况
    • 5.2 序列变化情况计算
  • 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 毕业设计 大数据时间序列股价预测分析系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 时间序列的由来

提到时间序列分析技术,就不得不说到其中的AR/MA/ARMA/ARIMA分析模型。这四种分析方法的共同特点都是跳出变动成分的分析角度,从时间序列本身出发,力求得出前期数据与后期数据的量化关系,从而建立前期数据为自变量,后期数据为因变量的模型,达到预测的目的。来个通俗的比喻,大前天的你、前天的你、昨天的你造就了今天的你。

2.1 四种模型的名称:

  • AR模型:自回归模型(Auto Regressive model);
  • MA模型:移动平均模型(Moving Average model);
  • ARMA:自回归移动平均模型(Auto Regressive and Moving Average model);
  • ARIMA模型:差分自回归移动平均模型。
  • AR模型:

如果某个时间序列的任意数值可以表示成下面的回归方程,那么该时间序列服从p阶的自回归过程,可以表示为AR§:

在这里插入图片描述
AR模型利用前期数值与后期数值的相关关系(自相关),建立包含前期数值和后期数值的回归方程,达到预测的目的,因此成为自回归过程。这里需要解释白噪声,白噪声可以理解成时间序列数值的随机波动,这些随机波动的总和会等于0,例如,某饼干自动化生产线,要求每包饼干为500克,但是生产出来的饼干产品由于随机因素的影响,不可能精确的等于500克,而是会在500克上下波动,这些波动的总和将会等于互相抵消等于0。

3 数据预览


import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

#准备两个数组
list1 = [6,4,8]
list2 = [8,6,10]#分别将list1,list2转为Series数组
list1_series = pd.Series(list1) 
print(list1_series)
list2_series = pd.Series(list2) 
print(list2_series)#将两个Series转为DataFrame,对应列名分别为A和B
frame = { 'Col A': list1_series, 'Col B': list2_series } 
result = pd.DataFrame(frame)result.plot()
plt.show()

在这里插入图片描述

4 理论公式

4.1 协方差

首先看下协方差的公式:

在这里插入图片描述

在这里插入图片描述

4.2 相关系数

计算出Cov后,就可以计算相关系数了,值在-1到1之间,越接近1,说明正相关性越大;越接近-1,则负相关性越大,0为无相关性
公式如下:

在这里插入图片描述

4.3 scikit-learn计算相关性

在这里插入图片描述


#各特征间关系的矩阵图
sns.pairplot(iris, hue=‘species’, size=3, aspect=1)

在这里插入图片描述

Andrews Curves 是一种通过将每个观察映射到函数来可视化多维数据的方法。
使用 Andrews Curves 将每个多变量观测值转换为曲线并表示傅立叶级数的系数,这对于检测时间序列数据中的异常值很有用。


plt.subplots(figsize = (10,8))
pd.plotting.andrews_curves(iris, ‘species’, colormap=‘cool’)

在这里插入图片描述
这里以经典的鸢尾花数据集为例

setosa、versicolor、virginica代表了三个品种的鸢尾花。可以看出各个特征间有交集,也有一定的分别规律。


#最后,通过热图找出数据集中不同特征之间的相关性,高正值或负值表明特征具有高度相关性:

fig=plt.gcf()
fig.set_size_inches(10,6)
fig=sns.heatmap(iris.corr(), annot=True, cmap='GnBu', linewidths=1, linecolor='k', \
square=True, mask=False, vmin=-1, vmax=1, \
cbar_kws={"orientation": "vertical"}, cbar=True)

在这里插入图片描述

5 金融数据的时序分析

主要介绍:时间序列变化情况计算、时间序列重采样以及窗口函数

5.1 数据概况


import pandas as pd

tm = pd.read_csv('/home/kesci/input/gupiao_us9955/Close.csv')
tm.head()

在这里插入图片描述

数据中各个指标含义:

  • AAPL.O | Apple Stock
  • MSFT.O | Microsoft Stock
  • INTC.O | Intel Stock
  • AMZN.O | Amazon Stock
  • GS.N | Goldman Sachs Stock
  • SPY | SPDR S&P; 500 ETF Trust
  • .SPX | S&P; 500 Index
  • .VIX | VIX Volatility Index
  • EUR= | EUR/USD Exchange Rate
  • XAU= | Gold Price
  • GDX | VanEck Vectors Gold Miners ETF
  • GLD | SPDR Gold Trust

8年期间价格(或指标)走势一览图

在这里插入图片描述

5.2 序列变化情况计算

  • 计算每一天各项指标的差异值(后一天减去前一天结果)
  • 计算pct_change:增长率也就是 (后一个值-前一个值)/前一个值)
  • 计算平均计算pct_change指标
  • 绘图观察哪个指标平均增长率最高
  • 计算连续时间的增长率(其中需要计算今天价格和昨天价格的差异)

计算每一天各项指标的差异值(后一天减去前一天结果)

在这里插入图片描述

计算pct_change:增长率也就是 (后一个值-前一个值)/前一个值)

在这里插入图片描述

计算平均计算pct_change指标
绘图观察哪个指标平均增长率最高

在这里插入图片描述
除了波动率指数(.VIX指标)增长率最高外,就是亚马逊的股价了!贝佐斯简直就是宇宙最强光头强

计算连续时间的增长率(其中需要计算今天价格和昨天价格的差异)


#第二天数据
tm.shift(1).head()

#计算增长率
rets = np.log(tm/tm.shift(1))
print(rets.tail().round(3))#cumsum的小栗子:
print('小栗子的结果:',np.cumsum([1,2,3,4]))#增长率做cumsum需要对log进行还原,用e^x
rets.cumsum().apply(np.exp).plot(figsize=(10,6))

在这里插入图片描述
以上是在连续时间内的增长率,也就是说,2010年的1块钱,到2018年已经变为10多块了(以亚马逊为例)

(未完待续,该项目为demo预测部分有同学需要联系学长完成)

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

计算机竞赛 基于大数据的时间序列股价预测分析与可视化 - lstm

文章目录 1 前言2 时间序列的由来2.1 四种模型的名称: 3 数据预览4 理论公式4.1 协方差4.2 相关系数4.3 scikit-learn计算相关性 5 金融数据的时序分析5.1 数据概况5.2 序列变化情况计算 最后 1 前言 🔥 优质竞赛项目系列,今天要分享的是 &…...

python进行数据分析:数据预处理

六大数据类型 见python基本功 import numpy as np import pandas as pd数据预处理 缺失值处理 float_data pd.Series([1.2, -3.5, np.nan, 0]) float_data0 1.2 1 -3.5 2 NaN 3 0.0 dtype: float64查看缺失值 float_data.isna()0 False 1 …...

百度Apollo:引领自动驾驶技术的创新与突破

文章目录 前言一、技术创新二、开放合作三、生态建设四、安全可靠性总结 前言 随着科技的迅猛发展,自动驾驶技术正成为未来交通领域的重要发展方向。在这个领域中,百度Apollo作为中国领先的自动驾驶平台,以其卓越的创新能力和开放合作精神&a…...

Python爬虫 异步、缓存技巧

在进行大规模数据抓取时,Python爬虫的速度和效率是至关重要的。本文将介绍如何通过异步请求、缓存和代理池等技巧来优化Python爬虫的速度和性能。我们提供了实用的方案和代码示例,帮助你加速数据抓取过程,提高爬虫的效率。 使用异步请求、缓…...

YOLOv5屏蔽区域检测(选择区域检测)

YOLOv5屏蔽区域检测以及选择区域检测 前期准备labelme选择mask区域 代码改动 前期准备 思路就是通过一个mask掩膜,对我们想要屏蔽或者选择的区域进行遮挡处理,在推理的时候,将有mask掩膜的图像输入,将最后的结果显示在原始图像上…...

记录一次presto sql执行报错 Error executing query的解决办法

在执行presto sql 时报错截图如下: 查看后台执行报错日志: java.sql.SQLException: Error executing query at com.facebook.presto.jdbc.PrestoStatement.internalExecute(PrestoStatement.java:307) at com.facebook.presto.jdbc.PrestoStatement.exe…...

Android Studio开发之路 (五)导入OpenCV以及报错解决

一、步骤 官网下载opencv包(我下的是4.7.0)并解压,openvc官网 先创建一个空项目,简单跑一下能正常输出helloworld 点击file->new->Import Module选择解压之后的opencv-android-sdk文件夹中的SDk文件夹, modu…...

vue3.3中ref和reactive原理源代码分析

源码是ts编写的,这里部分简化成js便于阅读 function ref(value) {return createRef(value, false) }function createRef(rawValue, shallow) { //shallow是否是浅层定义数据,用于区别ref和shallowRefif (isRef(rawValue)) {//如果已经是ref直接返回源数据return rawValue}retu…...

10.Oracle中decode函数

【函数格式】: decode ( expression, condition_01, result_01, condition_02, result_02, ......, condition_n, result_n, result_default) 【函数说明】: 若表达式expression值与condition_01值匹配,则返回result_01,…...

Podman安装部署kafka和管理界面(快速跑起来)

#1.拉取镜像 podman pull bitnami/zookeeper podman pull bitnami/kafka#2.创建子网 podman network create knet#3.创建zookeeper podman run -itd --name zookeeper-server -p 2181:2181 \ --net knet \ -e ALLOW_ANONYMOUS_LOGINyes \ bitnami/zookeeper:latest#3.1查看z…...

Hbase文档--架构体系

阿丹: 基础概念了解之后了解目标知识的架构体系,就能事半功倍。 架构体系 关键组件介绍: HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起…...

stm32基于HAL库驱动外部SPI flash制作虚拟U盘

stm32基于HAL库驱动外部SPI flash制作虚拟U盘 📌参考文章:https://xiaozhuanlan.com/topic/6058234791🎞实现效果演示: 🔖上图中的读到的FLASH_ID所指的是针对不同容量,所对应的ID。 //W25X/Q不同容量对应…...

vue3-ts- element-plus新增组件-过滤

新增组件-所有值为空时过滤 <el-form-item label"家庭成员"><divclass"username-box"v-for"(item, index) in form.namelist":key"index"><div>姓名&#xff1a;<el-input v-model"item.name" placeho…...

PostgreSQL SQL优化

Oracle SQL优化 一、在字段里面写的子查询放到from后面&#xff0c;用left join&#xff0c;会大幅提高SQL查询速度。 一、在字段里面写的子查询放到from后面&#xff0c;用left join&#xff0c;会大幅提高SQL查询速度。...

debian12网络静态ip配置-OSSIM 安全漏洞扫描系统平台

本配置适合于服务器上的静态ip配置&#xff0c;该方法简单可靠。 1 临时配置 ifconfig eth0 192.168.1.97 netmask 255.255.255.0 broadcast 192.168.1.255 ip route add default via 192.168.1.1 2 主要的网络配置文件 /etc/network/interfaces /etc/resolv.conf 3 配置…...

微软 Visual Studio 现已内置 Markdown 编辑器,可直接修改预览 .md 文件

Visual Studio Code V1.66.0 中文版 大小&#xff1a;75.30 MB类别&#xff1a;文字处理 本地下载 Markdown 是一种轻量级标记语言&#xff0c;当开发者想要格式化代码但又不想牺牲易读性时&#xff0c;Markdown 是一个很好的解决方案&#xff0c;比如 GitHub 就使用 Markdo…...

阿里云通义千问开源第二波!大规模视觉语言模型Qwen-VL上线魔搭社区

通义千问开源第二波&#xff01;8月25日消息&#xff0c;阿里云推出大规模视觉语言模型Qwen-VL&#xff0c;一步到位、直接开源。Qwen-VL以通义千问70亿参数模型Qwen-7B为基座语言模型研发&#xff0c;支持图文输入&#xff0c;具备多模态信息理解能力。在主流的多模态任务评测…...

在腾讯云服务器OpenCLoudOS系统中安装Jenkins(有图详解)

Jenkins介绍 Jenkins是一个开源软件项目&#xff0c;是基于java开发的一种持续集成工具&#xff0c;用于监控持续重复的工作&#xff0c;旨在提供一个开放易用的软件平台&#xff0c;使软件的持续集成变成可能。 将项目代码的svn地址配置在Jenkins&#xff0c;就可以直接在Je…...

《vue3实战》在created生命周期中运用slice()方法结合element plus组件实现电影评价系统的分页

目录 前言 电影评价系统的分页是什么&#xff1f;它具体的作用体现在哪些方面&#xff1f; 一、slice的含义、语法和作用以及created的作用 slice是什么&#xff1f;slice有什么语法&#xff1f;slice的作用体现在哪些方面&#xff1f; created生命周期的作用&#xff1a;…...

NO.04 MyBatis的各种查询功能

目录 1、查询一个实体类对象 2、查询一个List集合 3、查询单个数据 5、查询多条数据并存储在Map集合中 5.1 方法一&#xff1a;将数据存储在map集合中&#xff0c;再将map集合存储在List集合中 5.2 方法二&#xff1a;将数据存储在map集合中 6、MyBatis中为Java中常用的…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

JavaScript基础-API 和 Web API

在学习JavaScript的过程中&#xff0c;理解API&#xff08;应用程序接口&#xff09;和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能&#xff0c;使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...