计算机竞赛 基于大数据的时间序列股价预测分析与可视化 - lstm
文章目录
- 1 前言
- 2 时间序列的由来
- 2.1 四种模型的名称:
- 3 数据预览
- 4 理论公式
- 4.1 协方差
- 4.2 相关系数
- 4.3 scikit-learn计算相关性
- 5 金融数据的时序分析
- 5.1 数据概况
- 5.2 序列变化情况计算
- 最后
1 前言
🔥 优质竞赛项目系列,今天要分享的是
🚩 毕业设计 大数据时间序列股价预测分析系统
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🥇学长这里给一个题目综合评分(每项满分5分)
- 难度系数:3分
- 工作量:3分
- 创新点:3分
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
2 时间序列的由来
提到时间序列分析技术,就不得不说到其中的AR/MA/ARMA/ARIMA分析模型。这四种分析方法的共同特点都是跳出变动成分的分析角度,从时间序列本身出发,力求得出前期数据与后期数据的量化关系,从而建立前期数据为自变量,后期数据为因变量的模型,达到预测的目的。来个通俗的比喻,大前天的你、前天的你、昨天的你造就了今天的你。
2.1 四种模型的名称:
- AR模型:自回归模型(Auto Regressive model);
- MA模型:移动平均模型(Moving Average model);
- ARMA:自回归移动平均模型(Auto Regressive and Moving Average model);
- ARIMA模型:差分自回归移动平均模型。
- AR模型:
如果某个时间序列的任意数值可以表示成下面的回归方程,那么该时间序列服从p阶的自回归过程,可以表示为AR§:

AR模型利用前期数值与后期数值的相关关系(自相关),建立包含前期数值和后期数值的回归方程,达到预测的目的,因此成为自回归过程。这里需要解释白噪声,白噪声可以理解成时间序列数值的随机波动,这些随机波动的总和会等于0,例如,某饼干自动化生产线,要求每包饼干为500克,但是生产出来的饼干产品由于随机因素的影响,不可能精确的等于500克,而是会在500克上下波动,这些波动的总和将会等于互相抵消等于0。
3 数据预览
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
#准备两个数组
list1 = [6,4,8]
list2 = [8,6,10]#分别将list1,list2转为Series数组
list1_series = pd.Series(list1)
print(list1_series)
list2_series = pd.Series(list2)
print(list2_series)#将两个Series转为DataFrame,对应列名分别为A和B
frame = { 'Col A': list1_series, 'Col B': list2_series }
result = pd.DataFrame(frame)result.plot()
plt.show()

4 理论公式
4.1 协方差
首先看下协方差的公式:


4.2 相关系数
计算出Cov后,就可以计算相关系数了,值在-1到1之间,越接近1,说明正相关性越大;越接近-1,则负相关性越大,0为无相关性
公式如下:

4.3 scikit-learn计算相关性

#各特征间关系的矩阵图
sns.pairplot(iris, hue=‘species’, size=3, aspect=1)

Andrews Curves 是一种通过将每个观察映射到函数来可视化多维数据的方法。
使用 Andrews Curves 将每个多变量观测值转换为曲线并表示傅立叶级数的系数,这对于检测时间序列数据中的异常值很有用。
plt.subplots(figsize = (10,8))
pd.plotting.andrews_curves(iris, ‘species’, colormap=‘cool’)

这里以经典的鸢尾花数据集为例
setosa、versicolor、virginica代表了三个品种的鸢尾花。可以看出各个特征间有交集,也有一定的分别规律。
#最后,通过热图找出数据集中不同特征之间的相关性,高正值或负值表明特征具有高度相关性:
fig=plt.gcf()
fig.set_size_inches(10,6)
fig=sns.heatmap(iris.corr(), annot=True, cmap='GnBu', linewidths=1, linecolor='k', \
square=True, mask=False, vmin=-1, vmax=1, \
cbar_kws={"orientation": "vertical"}, cbar=True)

5 金融数据的时序分析
主要介绍:时间序列变化情况计算、时间序列重采样以及窗口函数
5.1 数据概况
import pandas as pd
tm = pd.read_csv('/home/kesci/input/gupiao_us9955/Close.csv')
tm.head()

数据中各个指标含义:
- AAPL.O | Apple Stock
- MSFT.O | Microsoft Stock
- INTC.O | Intel Stock
- AMZN.O | Amazon Stock
- GS.N | Goldman Sachs Stock
- SPY | SPDR S&P; 500 ETF Trust
- .SPX | S&P; 500 Index
- .VIX | VIX Volatility Index
- EUR= | EUR/USD Exchange Rate
- XAU= | Gold Price
- GDX | VanEck Vectors Gold Miners ETF
- GLD | SPDR Gold Trust
8年期间价格(或指标)走势一览图

5.2 序列变化情况计算
- 计算每一天各项指标的差异值(后一天减去前一天结果)
- 计算pct_change:增长率也就是 (后一个值-前一个值)/前一个值)
- 计算平均计算pct_change指标
- 绘图观察哪个指标平均增长率最高
- 计算连续时间的增长率(其中需要计算今天价格和昨天价格的差异)
计算每一天各项指标的差异值(后一天减去前一天结果)

计算pct_change:增长率也就是 (后一个值-前一个值)/前一个值)

计算平均计算pct_change指标
绘图观察哪个指标平均增长率最高

除了波动率指数(.VIX指标)增长率最高外,就是亚马逊的股价了!贝佐斯简直就是宇宙最强光头强
计算连续时间的增长率(其中需要计算今天价格和昨天价格的差异)
#第二天数据
tm.shift(1).head()
#计算增长率
rets = np.log(tm/tm.shift(1))
print(rets.tail().round(3))#cumsum的小栗子:
print('小栗子的结果:',np.cumsum([1,2,3,4]))#增长率做cumsum需要对log进行还原,用e^x
rets.cumsum().apply(np.exp).plot(figsize=(10,6))

以上是在连续时间内的增长率,也就是说,2010年的1块钱,到2018年已经变为10多块了(以亚马逊为例)
(未完待续,该项目为demo预测部分有同学需要联系学长完成)
最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:
计算机竞赛 基于大数据的时间序列股价预测分析与可视化 - lstm
文章目录 1 前言2 时间序列的由来2.1 四种模型的名称: 3 数据预览4 理论公式4.1 协方差4.2 相关系数4.3 scikit-learn计算相关性 5 金融数据的时序分析5.1 数据概况5.2 序列变化情况计算 最后 1 前言 🔥 优质竞赛项目系列,今天要分享的是 &…...
python进行数据分析:数据预处理
六大数据类型 见python基本功 import numpy as np import pandas as pd数据预处理 缺失值处理 float_data pd.Series([1.2, -3.5, np.nan, 0]) float_data0 1.2 1 -3.5 2 NaN 3 0.0 dtype: float64查看缺失值 float_data.isna()0 False 1 …...
百度Apollo:引领自动驾驶技术的创新与突破
文章目录 前言一、技术创新二、开放合作三、生态建设四、安全可靠性总结 前言 随着科技的迅猛发展,自动驾驶技术正成为未来交通领域的重要发展方向。在这个领域中,百度Apollo作为中国领先的自动驾驶平台,以其卓越的创新能力和开放合作精神&a…...
Python爬虫 异步、缓存技巧
在进行大规模数据抓取时,Python爬虫的速度和效率是至关重要的。本文将介绍如何通过异步请求、缓存和代理池等技巧来优化Python爬虫的速度和性能。我们提供了实用的方案和代码示例,帮助你加速数据抓取过程,提高爬虫的效率。 使用异步请求、缓…...
YOLOv5屏蔽区域检测(选择区域检测)
YOLOv5屏蔽区域检测以及选择区域检测 前期准备labelme选择mask区域 代码改动 前期准备 思路就是通过一个mask掩膜,对我们想要屏蔽或者选择的区域进行遮挡处理,在推理的时候,将有mask掩膜的图像输入,将最后的结果显示在原始图像上…...
记录一次presto sql执行报错 Error executing query的解决办法
在执行presto sql 时报错截图如下: 查看后台执行报错日志: java.sql.SQLException: Error executing query at com.facebook.presto.jdbc.PrestoStatement.internalExecute(PrestoStatement.java:307) at com.facebook.presto.jdbc.PrestoStatement.exe…...
Android Studio开发之路 (五)导入OpenCV以及报错解决
一、步骤 官网下载opencv包(我下的是4.7.0)并解压,openvc官网 先创建一个空项目,简单跑一下能正常输出helloworld 点击file->new->Import Module选择解压之后的opencv-android-sdk文件夹中的SDk文件夹, modu…...
vue3.3中ref和reactive原理源代码分析
源码是ts编写的,这里部分简化成js便于阅读 function ref(value) {return createRef(value, false) }function createRef(rawValue, shallow) { //shallow是否是浅层定义数据,用于区别ref和shallowRefif (isRef(rawValue)) {//如果已经是ref直接返回源数据return rawValue}retu…...
10.Oracle中decode函数
【函数格式】: decode ( expression, condition_01, result_01, condition_02, result_02, ......, condition_n, result_n, result_default) 【函数说明】: 若表达式expression值与condition_01值匹配,则返回result_01,…...
Podman安装部署kafka和管理界面(快速跑起来)
#1.拉取镜像 podman pull bitnami/zookeeper podman pull bitnami/kafka#2.创建子网 podman network create knet#3.创建zookeeper podman run -itd --name zookeeper-server -p 2181:2181 \ --net knet \ -e ALLOW_ANONYMOUS_LOGINyes \ bitnami/zookeeper:latest#3.1查看z…...
Hbase文档--架构体系
阿丹: 基础概念了解之后了解目标知识的架构体系,就能事半功倍。 架构体系 关键组件介绍: HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起…...
stm32基于HAL库驱动外部SPI flash制作虚拟U盘
stm32基于HAL库驱动外部SPI flash制作虚拟U盘 📌参考文章:https://xiaozhuanlan.com/topic/6058234791🎞实现效果演示: 🔖上图中的读到的FLASH_ID所指的是针对不同容量,所对应的ID。 //W25X/Q不同容量对应…...
vue3-ts- element-plus新增组件-过滤
新增组件-所有值为空时过滤 <el-form-item label"家庭成员"><divclass"username-box"v-for"(item, index) in form.namelist":key"index"><div>姓名:<el-input v-model"item.name" placeho…...
PostgreSQL SQL优化
Oracle SQL优化 一、在字段里面写的子查询放到from后面,用left join,会大幅提高SQL查询速度。 一、在字段里面写的子查询放到from后面,用left join,会大幅提高SQL查询速度。...
debian12网络静态ip配置-OSSIM 安全漏洞扫描系统平台
本配置适合于服务器上的静态ip配置,该方法简单可靠。 1 临时配置 ifconfig eth0 192.168.1.97 netmask 255.255.255.0 broadcast 192.168.1.255 ip route add default via 192.168.1.1 2 主要的网络配置文件 /etc/network/interfaces /etc/resolv.conf 3 配置…...
微软 Visual Studio 现已内置 Markdown 编辑器,可直接修改预览 .md 文件
Visual Studio Code V1.66.0 中文版 大小:75.30 MB类别:文字处理 本地下载 Markdown 是一种轻量级标记语言,当开发者想要格式化代码但又不想牺牲易读性时,Markdown 是一个很好的解决方案,比如 GitHub 就使用 Markdo…...
阿里云通义千问开源第二波!大规模视觉语言模型Qwen-VL上线魔搭社区
通义千问开源第二波!8月25日消息,阿里云推出大规模视觉语言模型Qwen-VL,一步到位、直接开源。Qwen-VL以通义千问70亿参数模型Qwen-7B为基座语言模型研发,支持图文输入,具备多模态信息理解能力。在主流的多模态任务评测…...
在腾讯云服务器OpenCLoudOS系统中安装Jenkins(有图详解)
Jenkins介绍 Jenkins是一个开源软件项目,是基于java开发的一种持续集成工具,用于监控持续重复的工作,旨在提供一个开放易用的软件平台,使软件的持续集成变成可能。 将项目代码的svn地址配置在Jenkins,就可以直接在Je…...
《vue3实战》在created生命周期中运用slice()方法结合element plus组件实现电影评价系统的分页
目录 前言 电影评价系统的分页是什么?它具体的作用体现在哪些方面? 一、slice的含义、语法和作用以及created的作用 slice是什么?slice有什么语法?slice的作用体现在哪些方面? created生命周期的作用:…...
NO.04 MyBatis的各种查询功能
目录 1、查询一个实体类对象 2、查询一个List集合 3、查询单个数据 5、查询多条数据并存储在Map集合中 5.1 方法一:将数据存储在map集合中,再将map集合存储在List集合中 5.2 方法二:将数据存储在map集合中 6、MyBatis中为Java中常用的…...
2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
MySQL 部分重点知识篇
一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键ÿ…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...
QT开发技术【ffmpeg + QAudioOutput】音乐播放器
一、 介绍 使用ffmpeg 4.2.2 在数字化浪潮席卷全球的当下,音视频内容犹如璀璨繁星,点亮了人们的生活与工作。从短视频平台上令人捧腹的搞笑视频,到在线课堂中知识渊博的专家授课,再到影视平台上扣人心弦的高清大片,音…...
