当前位置: 首页 > news >正文

概率论作业啊啊啊

1 数据位置 (Measures of location)
对于数据集: 7 , 9 , 9 , 10 , 10 , 11 , 11 , 12 , 12 , 12 , 13 , 14 , 14 , 15 , 16 7,9,9,10,10,11,11,12,12,12,13,14,14,15,16 7,9,9,10,10,11,11,12,12,12,13,14,14,15,16

  • 计算加权平均数,其中权重为: 2 , 1 , 3 , 2 , 1 , 1 , 2 , 2 , 1 , 3 , 2 , 1 , 1 , 1 , 1 2,1,3,2,1,1,2,2,1,3,2,1,1,1,1 2,1,3,2,1,1,2,2,1,3,2,1,1,1,1
  • 计算截断均值, 去除最高和最低的两个值。
  • 计算众数,中位数

2 数据散布(Measures of spread/dispersion)
使用上述数据集,计算四分位差

3 随机变量的类型和概率分布
考虑一个实验,其中一个包包含 5 个红球和 3 个绿球。随机从中抽取 2 个球,不放回。定义一 个随机变量 X X X 为抽取的红球数量。列出 X X X 的所有可能值,并为每个值计算概率。

4 理论概率分布之常见的离散型分布
一个生产线上,产品的不合格率为 0.05 。现在从生产线上随机选择10个产品。使用二项分布 计算恰好有 2 个不合格产品的概率。

5 假设学生的智商(IQ)分数分布是标准正态分布,平均值为100,标准差为15。计算以下情况的概率:

一个随机选择的学生的IQ分数高于125的概率。
一个随机选择的学生的IQ分数在85到115之间的概率。
一个随机选择的学生的IQ分数低于70或高于130的概率。

答案


  1. 数据位置 (Measures of location)
    答案:
  • 加权平均数 = 11.25 =11.25 =11.25
  • 截断均值 = 11.69 =11.69 =11.69
  1. 数据散布 (Measures of spread/dispersion)
    答案:
  • 四分位差 = 3.5 =3.5 =3.5
  • 方差 = 5.69 =5.69 =5.69
  • 标准差 = 2.39 =2.39 =2.39
  • 众数为 = 12 =12 =12,中位数也为 = 12 =12 =12
  1. 随机变量的类型和概率分布
    考虑这样一个实验,从一个包含 5 个红球和 3 个绿球的袋子中随机抽取 2 个球,并不放回。我们 定义一个随机变量 X X X 来表示抽取的红球数量。我们可以为 X X X 的每个可能值计算概率。

P ( X = 0 ) P(X=0) P(X=0) : 抽取两个球都是绿色的。
这个概率可以这样计算:
首先,第一个球是绿色的概率是 3 8 \frac{3}{8} 83
接着,第二个球也是绿色的概率是 2 7 \frac{2}{7} 72 (因为已经有一个绿球被抽出,所以只剩下 2 个绿球和 7 个球总数)。
因此,两次事件的联合概率为: P ( X = 0 ) = 3 8 × 2 7 = 6 56 P(X=0)=\frac{3}{8} \times \frac{2}{7}=\frac{6}{56} P(X=0)=83×72=566
P ( X = 1 ) P(X=1) P(X=1) : 抽取的其中一个球是红色,另一个是绿色。
这个概率可以分为两种情况:
第一种情况是首先抽到一个红球,然后抽到一个绿球。概率为 5 8 × 3 7 \frac{5}{8} \times \frac{3}{7} 85×73
第二种情况是首先抽到一个绿球,然后抽到一个红球。概率为 3 8 × 5 7 \frac{3}{8} \times \frac{5}{7} 83×75
把这两种情况的概率加起来,我们得到: P ( X = 1 ) = 5 8 × 3 7 + 3 8 × 5 7 = 30 56 P(X=1)=\frac{5}{8} \times \frac{3}{7}+\frac{3}{8} \times \frac{5}{7}=\frac{30}{56} P(X=1)=85×73+83×75=5630
P ( X = 2 ) P(X=2) P(X=2) : 抽取两个球都是红色的。
这个概率可以这样计算:
首先,第一个球是红色的概率是 5 8 \frac{5}{8} 85
接着,第二个球也是红色的概率是 4 7 \frac{4}{7} 74 (因为已经有一个红球被抽出,所以只剩下 4 个红球和 7 个球总数)。
因此,两次事件的联合概率为: P ( X = 2 ) = 5 8 × 4 7 = 20 56 P(X=2)=\frac{5}{8} \times \frac{4}{7}=\frac{20}{56} P(X=2)=85×74=5620

  1. 二项分布
    假设我们在生产线上随机选择了10个产品,而每个产品都是独立检查的。因此,每个产品不 合格的概率都是 0.05 ,合格的概率则是 0.95 。
    现在,我们想要知道恰好有 2 个产品不合格的概率。我们可以使用二项分布公式来计算这一概 率:
    P ( X = k ) = ( n k ) p k ( 1 − p ) n − k P(X=k)=\left(\begin{array}{l} n \\ k \end{array}\right) p^k(1-p)^{n-k} P(X=k)=(nk)pk(1p)nk
    其中:
  • ( n k ) \left(\begin{array}{l}n \\ k\end{array}\right) (nk) 是组合公式,表示从 n \mathrm{n} n 个中选择 k \mathrm{k} k 个的方法数。它的公式是:
    ( n k ) = n ! k ! ( n − k ) ! \left(\begin{array}{l} n \\ k \end{array}\right)=\frac{n !}{k !(n-k) !} (nk)=k!(nk)!n!
  • n n n 是试验次数,此处为 10 。
  • k k k 是成功的次数,此处为 2 。
  • p p p 是一次试验成功的概率,此处为 0.05 。
    将上述值代入公式,我们可以计算得到恰好有 2 个不合格产品的概率。
  1. 正态分布
    对于正态分布的随机变量 X X X ,我们通常使用以下的公式来计算其概率:
    P ( a ≤ X ≤ b ) = P ( X ≤ b ) − P ( X ≤ a ) P(a \leq X \leq b)=P(X \leq b)-P(X \leq a) P(aXb)=P(Xb)P(Xa)
    其中, P ( X ≤ b ) P(X \leq b) P(Xb) P ( X ≤ a ) P(X \leq a) P(Xa) 可以从正态分布的累积分布函数 (CDF) 中查找。
    对于标准正态分布,均值 μ = 0 \mu=0 μ=0 ,标准差 σ = 1 \sigma=1 σ=1 。但在这个例子中,我们的分布不是标准 的,所以我们需要先将其转换为标准正态分布。这可以通过以下的公式实现:
    Z = X − μ σ Z=\frac{X-\mu}{\sigma} Z=σXμ
    其中 Z Z Z 是标准正态分布的随机变量。

计算一个随机选择的学生的IQ分数高于125的概率:
首先, 我们将 I Q = 125 I Q=125 IQ=125 转换为标准正态变量:
Z = 125 − 100 15 Z=\frac{125-100}{15} Z=15125100
接着,我们查找标准正态分布表 (或使用计算工具) 来找到 Z Z Z 对应的概率 P ( Z ) P(Z) P(Z) 。 最后,我们使用 P ( X > 125 ) = 1 − P ( Z ) P(X>125)=1-P(Z) P(X>125)=1P(Z) 来得到所求的概率。

计算一个随机选择的学生的IQ分数在85到115之间的概率:
我们首先将 ∣ Q = 85 \mid Q=85 Q=85 ∣ Q = 115 \mid \mathrm{Q}=115 Q=115 都转换为标准正态变量:
Z 1 = 85 − 100 15 Z 2 = 115 − 100 15 \begin{aligned} & Z_1=\frac{85-100}{15} \\ & Z_2=\frac{115-100}{15} \end{aligned} Z1=1585100Z2=15115100
然后,我们查找标准正态分布表来找到 Z 1 Z_1 Z1 Z 2 Z_2 Z2 对应的概率 P ( Z 1 ) P\left(Z_1\right) P(Z1) P ( Z 2 ) P\left(Z_2\right) P(Z2) 。 最后,我们使用上面的公式来计算 P ( 85 ≤ X ≤ 115 ) = P ( Z 2 ) − P ( Z 1 ) P(85 \leq X \leq 115)=P\left(Z_2\right)-P\left(Z_1\right) P(85X115)=P(Z2)P(Z1)

计算一个随机选择的学生的IQ分数低于70或高于 130 的概率:
我们首先将 1 Q = 70 1 \mathrm{Q}=70 1Q=70 ∣ Q = 130 \mid \mathrm{Q}=130 Q=130 都转换为标准正态变量:
Z 1 = 70 − 100 15 Z 2 = 130 − 100 15 \begin{aligned} & Z_1=\frac{70-100}{15} \\ & Z_2=\frac{130-100}{15} \end{aligned} Z1=1570100Z2=15130100
然后,我们查找标准正态分布表来找到 Z 1 Z_1 Z1 Z 2 Z_2 Z2 对应的概率 P ( Z 1 ) P\left(Z_1\right) P(Z1) P ( Z 2 ) P\left(Z_2\right) P(Z2) 。 最后,我们使用以下的公式来得到所求的概率:
P ( X < 70 or  X > 130 ) = P ( Z 1 ) + ( 1 − P ( Z 2 ) ) P(X<70 \text { or } X>130)=P\left(Z_1\right)+\left(1-P\left(Z_2\right)\right) P(X<70 or X>130)=P(Z1)+(1P(Z2))

基于正态分布的计算结果如下:

一个随机选择的学生的IQ分数高于125的概率是 0.0478 (保留四位小数)。

一个随机选择的学生的IQ分数在85到115之间的概率是 0.6827。

一个随机选择的学生的IQ分数低于70或高于130的概率是 0.0455。

相关文章:

概率论作业啊啊啊

1 数据位置 (Measures of location) 对于数据集: 7 , 9 , 9 , 10 , 10 , 11 , 11 , 12 , 12 , 12 , 13 , 14 , 14 , 15 , 16 7,9,9,10,10,11,11,12,12,12,13,14,14,15,16 7,9,9,10,10,11,11,12,12,12,13,14,14,15,16 计算加权平均数&#xff0c;其中权重为: 2 , 1 , 3 , 2 ,…...

React re-render

What is&#xff1f; react的渲染分为两个阶段: render&#xff0c;组件第一次出现在屏幕上的时候触发re-render&#xff0c; 组件第一次渲染之后的渲染 当app的数据更新时(用户手动更新、或异步请求)。 When&#xff1f; re-render发生有四种可能&#xff1a; state改变…...

从零开始配置Jenkins与GitLab集成:一步步实现持续集成

在软件开发中&#xff0c;持续集成是确保高效协作和可靠交付的核心实践。以下是在CentOS上安装配置Jenkins与GitLab集成的详细步骤&#xff1a; 1.安装JDK 解压JDK安装包并设置环境变量&#xff1a; JDK下载网址 Java Downloads | Oracle 台灣 tar zxvf jdk-11.0.5_linux-x64_b…...

高效多用的群集-Haproxy搭建Web集群

Haproxy搭建 Web 群集 一、Haproxy前言 HAProxy是一个使用c语言编写的自由及开放源代码软件&#xff0c;其提供高可用性、负载均衡&#xff0c;以及基于TcP和HrrP的应用程序代理。HAProxy特别适用于那些负载特大的web站点&#xff0c;这些站点通常又需要会话保持或七层处理。…...

aws的s3匿名公开访问

点击桶权限 &#xff0c;添加策略 {"Version": "2012-10-17","Statement": [{"Sid": "AddPerm","Effect": "Allow","Principal": "*","Action": "s3:GetObject&qu…...

2023科隆游戏展:虚幻5游戏百花齐放,云渲染助力虚幻5高速渲染

8月23日&#xff0c;欧洲权威级游戏展示会——科隆游戏展拉开帷幕。今年的参展游戏也相当给力&#xff0c;数十款游戏新预告片在展会上公布&#xff0c;其中有不少游戏使用虚幻5引擎制作&#xff0c;开创了游戏开发新纪元。 虚幻5游戏百花齐放&#xff0c;渲染堪比电影级效果 …...

Spark大数据分析与实战笔记(第一章 Scala语言基础-2)

文章目录 章节概要1.2 Scala的基础语法1.2.1 声明值和变量1.2.2 数据类型1.2.3 算术和操作符重载1.2.4 控制结构语句1.2.5 方法和函数 章节概要 Spark是专为大规模数据处理而设计的快速通用的计算引擎&#xff0c;它是由Scala语言开发实现的&#xff0c;关于大数据技术&#xf…...

Linux 下 Mysql 的使用(Ubuntu20.04)

文章目录 一、安装二、使用2.1 登录2.2 数据库操作2.2.1 创建数据库2.2.2 删除数据库2.2.3 创建数据表 参考文档 一、安装 Linux 下 Mysql 的安装非常简单&#xff0c;一个命令即可&#xff1a; sudo apt install mysql-server检查安装是否成功&#xff0c;输入&#xff1a; …...

牛客练习赛114

A.最后有0得数肯定是10得倍数&#xff0c;然后直接排序即可 #include<bits/stdc.h> using namespace std; const int N 1e610,mod1e97; int n; void solve(){cin>>n;vector<int> a(n);for(auto&i:a) cin>>i;sort(a.begin(),a.end(),greater<&g…...

Http与Https

1.简单介绍 HTTP&#xff1a;最广泛应用的网络通信协议&#xff0c;基于TCP&#xff0c;数据传输简单高效&#xff0c;数据是明文。 HTTPS&#xff1a;是HTTP的加强版&#xff0c;是HTTPSSL。在HTTP的基础上加了安全机制&#xff0c;一方面保证数据的安全传输&#xff0c;另一…...

前端通信(渲染、http、缓存、异步、跨域)自用笔记

SSR/CSR&#xff1a;HTML拼接&#xff1f;网页源码&#xff1f;SEO/交互性 SSR &#xff08;server side render&#xff09;服务端渲染&#xff0c;是指由服务侧&#xff08;server side&#xff09;完成页面的DOM结构拼接&#xff0c;然后发送到浏览器&#xff0c;为其绑定状…...

43.227.198.x怎么检查服务器里是否中毒情况?

要检查43.227.198.1服务器是否中毒&#xff0c;可以执行以下步骤&#xff1a; 运行杀毒软件&#xff1a;运行已安装的杀毒软件进行全盘扫描&#xff0c;查看是否有病毒或恶意软件。如果发现病毒或恶意软件&#xff0c;立即将其删除或隔离。 检查系统文件&#xff1a;检查服务器…...

Sentinel dashboard无法查询到应用的限流配置问题以及解决

一。问题引入 使用sentinle-dashboard控制台 项目整体升级后&#xff0c;发现控制台上无法看到流控规则了 之前的问题是无法注册上来 现在是注册上来了。结果看不到流控规则配置了。 关于注册不上来的问题&#xff0c;可以看另一篇文章 https://blog.csdn.net/a15835774652/…...

【Spring Boot】社交网站中验证用户登录的checkUser方法

public boolean checkUser(User user) {User userInDb userRepository.findByUsername(user.getUsername());if (userInDb ! null && userInDb.getPassword().equals(user.getPassword())) {return true;} else {return false;}} } 这段代码是UserService类中的checkU…...

edge浏览器进行qq截图过保爆决过程

edge浏览器进行qq截图过保解决过程 参考&#xff1a;电脑截屏曝光特别高怎么解决&#xff1f; - 知乎 问题展示 饱和度过高&#xff0c;刺眼 1. 在chrome地址栏输入chrome://flags/ 2. 在页面的搜索栏搜索force color profile 3. 在选项中选择所对应的颜色管理。&#xff08…...

【Linux】Linux在防火墙firewall中开放或删除某端口

在生产中往往是不能关闭防火墙firewall的&#xff08;以下操作是在linux中执行的&#xff09; #补充一下查看防火墙的命令 #查看防火墙状态 systemctl status firewalld #关闭防火墙 systemctl stop firewalld #重启防火墙 systemctl restart firewalld #启动防火墙 systemctl …...

C++构造函数初始化列表

构造函数的一项重要功能是对成员变量进行初始化&#xff0c;为了达到这个目的&#xff0c;可以在构造函数的函数体中对成员变量一一赋值&#xff0c;还可以采用初始化列表。 C构造函数的初始化列表使得代码更加简洁&#xff0c;请看下面的例子&#xff1a; #include <iostre…...

c语言调用mciSendString播放音乐

如下所示&#xff0c;这是一个使用c语言调用系统方法mciSendString()&#xff0c;让系统播放音乐的示例&#xff1a; baihuaxiang 代码&#xff1a; #include <graphics.h> #include <Windows.h> #include <mmsystem.h>#pragma comment(lib,"WINMM.LIB…...

Qt:qRegisterMetaType为Qt信号和槽添加自定义参数类型

背景 qt信号和槽之间的参数传递默认只能传递qt内部已有的类型&#xff0c;例如QString等&#xff0c;若我们自定义类型作为参数时&#xff0c;虽然编译不会报错&#xff0c;但运行时会提示connect无效&#xff0c;无法识别自定义的类。 此时需要我们将自定义类进行注册&#…...

ffmpeg rtp发送video和audio并播放

发送h264 video ffmpeg -re -stream_loop -1 -i h264.mp4 -vcodec h264 -f rtp rtp://127.0.0.1:5006SDP: v0 o- 0 0 IN IP4 127.0.0.1 sNo Name cIN IP4 127.0.0.1 t0 0 atool:libavformat LIBAVFORMAT_VERSION mvideo 5006 RTP/AVP 96 artpmap:96 H264/90000 afmtp:96 packe…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving

地址&#xff1a;LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂&#xff0c;正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...