概率论作业啊啊啊
1 数据位置 (Measures of location)
对于数据集: 7 , 9 , 9 , 10 , 10 , 11 , 11 , 12 , 12 , 12 , 13 , 14 , 14 , 15 , 16 7,9,9,10,10,11,11,12,12,12,13,14,14,15,16 7,9,9,10,10,11,11,12,12,12,13,14,14,15,16
- 计算加权平均数,其中权重为: 2 , 1 , 3 , 2 , 1 , 1 , 2 , 2 , 1 , 3 , 2 , 1 , 1 , 1 , 1 2,1,3,2,1,1,2,2,1,3,2,1,1,1,1 2,1,3,2,1,1,2,2,1,3,2,1,1,1,1
- 计算截断均值, 去除最高和最低的两个值。
- 计算众数,中位数
2 数据散布(Measures of spread/dispersion)
使用上述数据集,计算四分位差
3 随机变量的类型和概率分布
考虑一个实验,其中一个包包含 5 个红球和 3 个绿球。随机从中抽取 2 个球,不放回。定义一 个随机变量 X X X 为抽取的红球数量。列出 X X X 的所有可能值,并为每个值计算概率。
4 理论概率分布之常见的离散型分布
一个生产线上,产品的不合格率为 0.05 。现在从生产线上随机选择10个产品。使用二项分布 计算恰好有 2 个不合格产品的概率。
5 假设学生的智商(IQ)分数分布是标准正态分布,平均值为100,标准差为15。计算以下情况的概率:
一个随机选择的学生的IQ分数高于125的概率。
一个随机选择的学生的IQ分数在85到115之间的概率。
一个随机选择的学生的IQ分数低于70或高于130的概率。
答案
- 数据位置 (Measures of location)
答案:
- 加权平均数 = 11.25 =11.25 =11.25
- 截断均值 = 11.69 =11.69 =11.69
- 数据散布 (Measures of spread/dispersion)
答案:
- 四分位差 = 3.5 =3.5 =3.5
- 方差 = 5.69 =5.69 =5.69
- 标准差 = 2.39 =2.39 =2.39
- 众数为 = 12 =12 =12,中位数也为 = 12 =12 =12。
- 随机变量的类型和概率分布
考虑这样一个实验,从一个包含 5 个红球和 3 个绿球的袋子中随机抽取 2 个球,并不放回。我们 定义一个随机变量 X X X 来表示抽取的红球数量。我们可以为 X X X 的每个可能值计算概率。
P ( X = 0 ) P(X=0) P(X=0) : 抽取两个球都是绿色的。
这个概率可以这样计算:
首先,第一个球是绿色的概率是 3 8 \frac{3}{8} 83 。
接着,第二个球也是绿色的概率是 2 7 \frac{2}{7} 72 (因为已经有一个绿球被抽出,所以只剩下 2 个绿球和 7 个球总数)。
因此,两次事件的联合概率为: P ( X = 0 ) = 3 8 × 2 7 = 6 56 P(X=0)=\frac{3}{8} \times \frac{2}{7}=\frac{6}{56} P(X=0)=83×72=566 。
P ( X = 1 ) P(X=1) P(X=1) : 抽取的其中一个球是红色,另一个是绿色。
这个概率可以分为两种情况:
第一种情况是首先抽到一个红球,然后抽到一个绿球。概率为 5 8 × 3 7 \frac{5}{8} \times \frac{3}{7} 85×73 。
第二种情况是首先抽到一个绿球,然后抽到一个红球。概率为 3 8 × 5 7 \frac{3}{8} \times \frac{5}{7} 83×75 。
把这两种情况的概率加起来,我们得到: P ( X = 1 ) = 5 8 × 3 7 + 3 8 × 5 7 = 30 56 P(X=1)=\frac{5}{8} \times \frac{3}{7}+\frac{3}{8} \times \frac{5}{7}=\frac{30}{56} P(X=1)=85×73+83×75=5630 。
P ( X = 2 ) P(X=2) P(X=2) : 抽取两个球都是红色的。
这个概率可以这样计算:
首先,第一个球是红色的概率是 5 8 \frac{5}{8} 85 。
接着,第二个球也是红色的概率是 4 7 \frac{4}{7} 74 (因为已经有一个红球被抽出,所以只剩下 4 个红球和 7 个球总数)。
因此,两次事件的联合概率为: P ( X = 2 ) = 5 8 × 4 7 = 20 56 P(X=2)=\frac{5}{8} \times \frac{4}{7}=\frac{20}{56} P(X=2)=85×74=5620 。
- 二项分布
假设我们在生产线上随机选择了10个产品,而每个产品都是独立检查的。因此,每个产品不 合格的概率都是 0.05 ,合格的概率则是 0.95 。
现在,我们想要知道恰好有 2 个产品不合格的概率。我们可以使用二项分布公式来计算这一概 率:
P ( X = k ) = ( n k ) p k ( 1 − p ) n − k P(X=k)=\left(\begin{array}{l} n \\ k \end{array}\right) p^k(1-p)^{n-k} P(X=k)=(nk)pk(1−p)n−k
其中:
- ( n k ) \left(\begin{array}{l}n \\ k\end{array}\right) (nk) 是组合公式,表示从 n \mathrm{n} n 个中选择 k \mathrm{k} k 个的方法数。它的公式是:
( n k ) = n ! k ! ( n − k ) ! \left(\begin{array}{l} n \\ k \end{array}\right)=\frac{n !}{k !(n-k) !} (nk)=k!(n−k)!n! - n n n 是试验次数,此处为 10 。
- k k k 是成功的次数,此处为 2 。
- p p p 是一次试验成功的概率,此处为 0.05 。
将上述值代入公式,我们可以计算得到恰好有 2 个不合格产品的概率。
- 正态分布
对于正态分布的随机变量 X X X ,我们通常使用以下的公式来计算其概率:
P ( a ≤ X ≤ b ) = P ( X ≤ b ) − P ( X ≤ a ) P(a \leq X \leq b)=P(X \leq b)-P(X \leq a) P(a≤X≤b)=P(X≤b)−P(X≤a)
其中, P ( X ≤ b ) P(X \leq b) P(X≤b) 和 P ( X ≤ a ) P(X \leq a) P(X≤a) 可以从正态分布的累积分布函数 (CDF) 中查找。
对于标准正态分布,均值 μ = 0 \mu=0 μ=0 ,标准差 σ = 1 \sigma=1 σ=1 。但在这个例子中,我们的分布不是标准 的,所以我们需要先将其转换为标准正态分布。这可以通过以下的公式实现:
Z = X − μ σ Z=\frac{X-\mu}{\sigma} Z=σX−μ
其中 Z Z Z 是标准正态分布的随机变量。
计算一个随机选择的学生的IQ分数高于125的概率:
首先, 我们将 I Q = 125 I Q=125 IQ=125 转换为标准正态变量:
Z = 125 − 100 15 Z=\frac{125-100}{15} Z=15125−100
接着,我们查找标准正态分布表 (或使用计算工具) 来找到 Z Z Z 对应的概率 P ( Z ) P(Z) P(Z) 。 最后,我们使用 P ( X > 125 ) = 1 − P ( Z ) P(X>125)=1-P(Z) P(X>125)=1−P(Z) 来得到所求的概率。
计算一个随机选择的学生的IQ分数在85到115之间的概率:
我们首先将 ∣ Q = 85 \mid Q=85 ∣Q=85 和 ∣ Q = 115 \mid \mathrm{Q}=115 ∣Q=115 都转换为标准正态变量:
Z 1 = 85 − 100 15 Z 2 = 115 − 100 15 \begin{aligned} & Z_1=\frac{85-100}{15} \\ & Z_2=\frac{115-100}{15} \end{aligned} Z1=1585−100Z2=15115−100
然后,我们查找标准正态分布表来找到 Z 1 Z_1 Z1 和 Z 2 Z_2 Z2 对应的概率 P ( Z 1 ) P\left(Z_1\right) P(Z1) 和 P ( Z 2 ) P\left(Z_2\right) P(Z2) 。 最后,我们使用上面的公式来计算 P ( 85 ≤ X ≤ 115 ) = P ( Z 2 ) − P ( Z 1 ) P(85 \leq X \leq 115)=P\left(Z_2\right)-P\left(Z_1\right) P(85≤X≤115)=P(Z2)−P(Z1) 。
计算一个随机选择的学生的IQ分数低于70或高于 130 的概率:
我们首先将 1 Q = 70 1 \mathrm{Q}=70 1Q=70 和 ∣ Q = 130 \mid \mathrm{Q}=130 ∣Q=130 都转换为标准正态变量:
Z 1 = 70 − 100 15 Z 2 = 130 − 100 15 \begin{aligned} & Z_1=\frac{70-100}{15} \\ & Z_2=\frac{130-100}{15} \end{aligned} Z1=1570−100Z2=15130−100
然后,我们查找标准正态分布表来找到 Z 1 Z_1 Z1 和 Z 2 Z_2 Z2 对应的概率 P ( Z 1 ) P\left(Z_1\right) P(Z1) 和 P ( Z 2 ) P\left(Z_2\right) P(Z2) 。 最后,我们使用以下的公式来得到所求的概率:
P ( X < 70 or X > 130 ) = P ( Z 1 ) + ( 1 − P ( Z 2 ) ) P(X<70 \text { or } X>130)=P\left(Z_1\right)+\left(1-P\left(Z_2\right)\right) P(X<70 or X>130)=P(Z1)+(1−P(Z2))
基于正态分布的计算结果如下:
一个随机选择的学生的IQ分数高于125的概率是 0.0478 (保留四位小数)。
一个随机选择的学生的IQ分数在85到115之间的概率是 0.6827。
一个随机选择的学生的IQ分数低于70或高于130的概率是 0.0455。
相关文章:
概率论作业啊啊啊
1 数据位置 (Measures of location) 对于数据集: 7 , 9 , 9 , 10 , 10 , 11 , 11 , 12 , 12 , 12 , 13 , 14 , 14 , 15 , 16 7,9,9,10,10,11,11,12,12,12,13,14,14,15,16 7,9,9,10,10,11,11,12,12,12,13,14,14,15,16 计算加权平均数,其中权重为: 2 , 1 , 3 , 2 ,…...
React re-render
What is? react的渲染分为两个阶段: render,组件第一次出现在屏幕上的时候触发re-render, 组件第一次渲染之后的渲染 当app的数据更新时(用户手动更新、或异步请求)。 When? re-render发生有四种可能: state改变…...

从零开始配置Jenkins与GitLab集成:一步步实现持续集成
在软件开发中,持续集成是确保高效协作和可靠交付的核心实践。以下是在CentOS上安装配置Jenkins与GitLab集成的详细步骤: 1.安装JDK 解压JDK安装包并设置环境变量: JDK下载网址 Java Downloads | Oracle 台灣 tar zxvf jdk-11.0.5_linux-x64_b…...

高效多用的群集-Haproxy搭建Web集群
Haproxy搭建 Web 群集 一、Haproxy前言 HAProxy是一个使用c语言编写的自由及开放源代码软件,其提供高可用性、负载均衡,以及基于TcP和HrrP的应用程序代理。HAProxy特别适用于那些负载特大的web站点,这些站点通常又需要会话保持或七层处理。…...
aws的s3匿名公开访问
点击桶权限 ,添加策略 {"Version": "2012-10-17","Statement": [{"Sid": "AddPerm","Effect": "Allow","Principal": "*","Action": "s3:GetObject&qu…...

2023科隆游戏展:虚幻5游戏百花齐放,云渲染助力虚幻5高速渲染
8月23日,欧洲权威级游戏展示会——科隆游戏展拉开帷幕。今年的参展游戏也相当给力,数十款游戏新预告片在展会上公布,其中有不少游戏使用虚幻5引擎制作,开创了游戏开发新纪元。 虚幻5游戏百花齐放,渲染堪比电影级效果 …...

Spark大数据分析与实战笔记(第一章 Scala语言基础-2)
文章目录 章节概要1.2 Scala的基础语法1.2.1 声明值和变量1.2.2 数据类型1.2.3 算术和操作符重载1.2.4 控制结构语句1.2.5 方法和函数 章节概要 Spark是专为大规模数据处理而设计的快速通用的计算引擎,它是由Scala语言开发实现的,关于大数据技术…...

Linux 下 Mysql 的使用(Ubuntu20.04)
文章目录 一、安装二、使用2.1 登录2.2 数据库操作2.2.1 创建数据库2.2.2 删除数据库2.2.3 创建数据表 参考文档 一、安装 Linux 下 Mysql 的安装非常简单,一个命令即可: sudo apt install mysql-server检查安装是否成功,输入: …...

牛客练习赛114
A.最后有0得数肯定是10得倍数,然后直接排序即可 #include<bits/stdc.h> using namespace std; const int N 1e610,mod1e97; int n; void solve(){cin>>n;vector<int> a(n);for(auto&i:a) cin>>i;sort(a.begin(),a.end(),greater<&g…...
Http与Https
1.简单介绍 HTTP:最广泛应用的网络通信协议,基于TCP,数据传输简单高效,数据是明文。 HTTPS:是HTTP的加强版,是HTTPSSL。在HTTP的基础上加了安全机制,一方面保证数据的安全传输,另一…...

前端通信(渲染、http、缓存、异步、跨域)自用笔记
SSR/CSR:HTML拼接?网页源码?SEO/交互性 SSR (server side render)服务端渲染,是指由服务侧(server side)完成页面的DOM结构拼接,然后发送到浏览器,为其绑定状…...
43.227.198.x怎么检查服务器里是否中毒情况?
要检查43.227.198.1服务器是否中毒,可以执行以下步骤: 运行杀毒软件:运行已安装的杀毒软件进行全盘扫描,查看是否有病毒或恶意软件。如果发现病毒或恶意软件,立即将其删除或隔离。 检查系统文件:检查服务器…...

Sentinel dashboard无法查询到应用的限流配置问题以及解决
一。问题引入 使用sentinle-dashboard控制台 项目整体升级后,发现控制台上无法看到流控规则了 之前的问题是无法注册上来 现在是注册上来了。结果看不到流控规则配置了。 关于注册不上来的问题,可以看另一篇文章 https://blog.csdn.net/a15835774652/…...
【Spring Boot】社交网站中验证用户登录的checkUser方法
public boolean checkUser(User user) {User userInDb userRepository.findByUsername(user.getUsername());if (userInDb ! null && userInDb.getPassword().equals(user.getPassword())) {return true;} else {return false;}} } 这段代码是UserService类中的checkU…...

edge浏览器进行qq截图过保爆决过程
edge浏览器进行qq截图过保解决过程 参考:电脑截屏曝光特别高怎么解决? - 知乎 问题展示 饱和度过高,刺眼 1. 在chrome地址栏输入chrome://flags/ 2. 在页面的搜索栏搜索force color profile 3. 在选项中选择所对应的颜色管理。(…...
【Linux】Linux在防火墙firewall中开放或删除某端口
在生产中往往是不能关闭防火墙firewall的(以下操作是在linux中执行的) #补充一下查看防火墙的命令 #查看防火墙状态 systemctl status firewalld #关闭防火墙 systemctl stop firewalld #重启防火墙 systemctl restart firewalld #启动防火墙 systemctl …...

C++构造函数初始化列表
构造函数的一项重要功能是对成员变量进行初始化,为了达到这个目的,可以在构造函数的函数体中对成员变量一一赋值,还可以采用初始化列表。 C构造函数的初始化列表使得代码更加简洁,请看下面的例子: #include <iostre…...

c语言调用mciSendString播放音乐
如下所示,这是一个使用c语言调用系统方法mciSendString(),让系统播放音乐的示例: baihuaxiang 代码: #include <graphics.h> #include <Windows.h> #include <mmsystem.h>#pragma comment(lib,"WINMM.LIB…...
Qt:qRegisterMetaType为Qt信号和槽添加自定义参数类型
背景 qt信号和槽之间的参数传递默认只能传递qt内部已有的类型,例如QString等,若我们自定义类型作为参数时,虽然编译不会报错,但运行时会提示connect无效,无法识别自定义的类。 此时需要我们将自定义类进行注册&#…...
ffmpeg rtp发送video和audio并播放
发送h264 video ffmpeg -re -stream_loop -1 -i h264.mp4 -vcodec h264 -f rtp rtp://127.0.0.1:5006SDP: v0 o- 0 0 IN IP4 127.0.0.1 sNo Name cIN IP4 127.0.0.1 t0 0 atool:libavformat LIBAVFORMAT_VERSION mvideo 5006 RTP/AVP 96 artpmap:96 H264/90000 afmtp:96 packe…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...

srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...

网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
【JavaSE】多线程基础学习笔记
多线程基础 -线程相关概念 程序(Program) 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序,比如我们使用QQ,就启动了一个进程,操作系统就会为该进程分配内存…...
4. TypeScript 类型推断与类型组合
一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式,自动确定它们的类型。 这一特性减少了显式类型注解的需要,在保持类型安全的同时简化了代码。通过分析上下文和初始值,TypeSc…...

android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

热烈祝贺埃文科技正式加入可信数据空间发展联盟
2025年4月29日,在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上,可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞,强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...
深度解析:etcd 在 Milvus 向量数据库中的关键作用
目录 🚀 深度解析:etcd 在 Milvus 向量数据库中的关键作用 💡 什么是 etcd? 🧠 Milvus 架构简介 📦 etcd 在 Milvus 中的核心作用 🔧 实际工作流程示意 ⚠️ 如果 etcd 出现问题会怎样&am…...