最新CMS指纹识别技术
指纹识别
1.CMS简介
CMS(Content Management System,内容管理系统),又称整站系统或文章系统,用于网站内容管理。用户只需下载对应的CMS软件包,部署、搭建后就可以直接使用CMS。各CMS具有独特的结构命名规则和特定的文件内容。
目前常见的CMS有DedeCMS、Discuz、PHPWeb、PHPWind、PHPCMS、ECShop、Dvbbs、SiteWeaver、ASPCMS、帝国、Z-Blog、WordPress等。
2.CMS指纹的识别方法
可以将CMS指纹识别分为四类:在线网站识别、手动识别、工具识别和Chrome浏览器插件(Wappalyzer)识别。不同的识别方法得到的结果可能不同,只需要比较不同结果,选取最可靠、最全面的结果。
(1)在线网站识别。
在线网站识别的主要工具如下。
BugScaner
潮汐指纹识别
云悉指纹识别
如图1-22所示,使用WhatWeb在线识别网站对“xxxxx.com”进行CMS指纹识别。

从检测结果中可以看出,“xxxxx.com”使用的中间件为Nginx,使用了Bootstrap框架进行开发。如果使用了某种CMS,则CMS的指纹信息也会显示。
图1-23所示为使用云悉指纹识别对某网站进行CMS指纹识别的结果。可以看到,该网站使用了用友致远OA的办公系统,并且使用了绿盟网站云防护系统。

(2)手动识别。
根据HTTP响应头判断,重点关注X-Powered-By、Cookie等字段。
根据HTML特征,重点关注body、title、meta等标签的内容和属性。
根据特殊的CLASS类型判断,HTML中存在特定CLASS属性的某些DIV标签。
(3)工具识别。
指纹检测工具可以快速识别一些主流的CMS,并且当我们需要批量识别资产时,使用工具的多线程选项会帮助我们更快速地得到识别结果。如图1-24所示,使用WhatWeb工具对“xxxxx.com”进行指纹识别。

检测结果和在线版WhatWeb在内容详细程度上有所差异,但在主要的检测内容上基本一致,其中对参数“-v”的设置能起到返回详细检测内容的作用。命令行版WhatWeb还支持批量检测及插件管理,非常适合批量梳理Web资产指纹信息。
常用的CMS指纹检测工具如下。
Ehole
Glass
14Finger
WhatWeb工具版
(4)Chrome浏览器插件(Wappalyzer)识别。
Wappalyzer是一款功能强大且非常实用的Chrome网站技术分析插件,通过该插件能够分析目标网站所采用的平台构架、网站环境、服务器配置环境、JavaScript框架、编程语言、中间件架构类型等参数,还可以检测出CMS的类型。
如图1-25所示,用该插件检测出“xxxxx.com”使用的Web中间件为Nginx。要想获得更多信息,读者可以根据自己的喜好开通高级权限来检测。

如果以上工具中没有目标网站的CMS指纹,则有可能目标网站是经过二次开发或完全自主开发的。这时,就需要寻找目标的一些突出特征,与当前目标有很强关联性的代码、目录、文件名,或者是网站的ICO图标文件。
得到相同网站的信息后,就可以通过渗透的手段,对其他网站进行渗透。这种手段在目标防控非常严格时比较有效,可以获得安全防护较为薄弱的网站,甚至是目标的测试站的信息,以曲线方式得到源代码,然后进行代码审计。
也可以在GitHub中搜索特征串或特征文件名,有可能获得二次开发前的CMS源码。
相关文章:
最新CMS指纹识别技术
指纹识别 1.CMS简介 CMS(Content Management System,内容管理系统),又称整站系统或文章系统,用于网站内容管理。用户只需下载对应的CMS软件包,部署、搭建后就可以直接使用CMS。各CMS具有独特的…...
快速入门学习记录:常用代码、特定函数、复杂概念和特定功能说明
😀前言 本篇博文是关于Java入门学习的一些常用记录,希望你能够喜欢 🏠个人主页:晨犀主页 🧑个人简介:大家好,我是晨犀,希望我的文章可以帮助到大家,您的满意是我的动力&a…...
【win视频播放器】HEVC视频扩展
问题描述: 播放此视频需要新的编解码器 编解码器允许应用读取并播放不同文件。可以从Microsoft Store下载该编解码器 ¥7.00 现在获取 稍后再说 解决方法: 方法一:(该方法我正常使用) 链接:ht…...
React+Typescript 父子组件事件传值
好 之前我们将 state 状态管理简单过了一下 那么 本文 我们来研究一下事假处理 点击事件上文中我们已经用过了 这里 我们就不去讲了 主要来说说 父子之间的事件 我们直接来编写一个小dom 我们父组件 编写代码如下 import Hello from "./components/hello";functio…...
python人工智能和机器学习
人工智能和机器学习是当今科技领域最热门和前沿的话题之一。随着数据的爆炸式增长和计算能力的提升,人工智能和机器学习在各个领域都有广泛的应用。Python作为一种易学易用且功能强大的编程语言,已经成为人工智能和机器学习的首选工具之一。本文将介绍Py…...
[PyTorch][chapter 51][Auto-Encoder -1]
目录: 简介 损失函数 自动编码器的类型 一 AutoEncoder 简介: 自动编码器是一种神经网络,用于无监督学习任务.(没有标签或标记数据), 例如降维,特征提取和数据压缩. 主要任务: 1: 输入数据 …...
Uniapp或者微信小程序如何动态的计算Scrollview的高度
当一个小程序页面,顶部有搜索栏,或者分类查询时,我们想要保证它们能固定到顶部,就需要使用到Scrollview,那么如何确定Scrollview就是一个问题,这时我们可以使用以下代码来实现 setScrollHeight(view #scr…...
Abase数据库管理系统
Abase数据库管理系统的架构介绍如下: 1. 概述 Abase是一个开源的分布式数据库中间件,实现MySQL数据库的自动扩缩容、故障转移和查询路由。 2. 功能架构 - 读写分离:拆分为主从两套服务 - 自动扩缩容:根据负载水平完成扩容 - 负载均衡:基于查询解析的路由 - 故障转移:快速切换…...
系统架构设计高级技能 · 大数据架构设计理论与实践
系列文章目录 系统架构设计高级技能 软件架构概念、架构风格、ABSD、架构复用、DSSA(一)【系统架构设计师】 系统架构设计高级技能 系统质量属性与架构评估(二)【系统架构设计师】 系统架构设计高级技能 软件可靠性分析与设计…...
ubuntu上使用osg3.2+osgearth2.9
一、介绍 在ubuntu上使用osgearth加载三维数字地球,首先要有osg和osgearth的库,这些可以直接使用apt-get下载安装,但是版本有些老,如果需要新版本的就需要自己编译。 #查看现有版本 sudo apt-cache madison openscenegraph #安装…...
C语言巧妙打印64位整数
使用C语言打印64位整数时,如果用的是32位编译器,那么打印如下, int64_t data 0x1234567890123456; printf("0x%llx\n", data);如果是64位编译器,那么打印代码如下, int64_t data 0x1234567890123456; pr…...
c语言每日一练(11)
前言:每日一练系列,每一期都包含5道选择题,2道编程题,博主会尽可能详细地进行讲解,令初学者也能听的清晰。每日一练系列会持续更新,暑假时三天之内必有一更,到了开学之后,将看学业情…...
SLAM十四讲学习笔记 第二期:部分课后实践代码
持续更新.... 前期准备第二讲实验一:简单输出 第五讲任务一:imageBasics(Ubuntu配置opencv)任务二:双目匹配点云(Ubuntu配置pangolin)检验部分我认为可以加深对CMake的理解 任务三:r…...
Android kotlin 跳转手机热点开关页面和判断热点是否打开
Android kotlin 跳转手机热点开关页面和判断热点是否打开 判断热点是否打开跳转手机热点开关页面顺带介绍一些其他常用的设置页面跳转 其他热点的一些相关知识Local-only hotspot 参考 判断热点是否打开 网上方法比较多,我这边使用了通过WifiManager 拿反射的getWi…...
Redis 执行 RDB 快照期间,主进程可以正常处理命令吗?
执行了 save 命令,会在主进程生成 RDB 文件,由于和执行操作命令在同一个线程,所以如果写入 RDB 文件的时间太长,会阻塞主进程。 执行 bgsave 过程中,由于是交给子进程来构建 RDB 文件,主进程还是可以继续工…...
Python加入Excel--生产力大提高|微软的全方面办公
Python作为一种功能强大的编程语言,已经逐渐成为了数据分析、机器学习、Web开发等领域的主流语言之一。而将Python集成到Excel中,则可以为Excel用户提供更加强大的数据处理和分析能力,同时也可以为Python开发者提供更加便捷的数据处理和可视化…...
Excel 分组排名
分组排名 公式:SUMPRODUCT((A:AA2)*(C:C>C2)) 1 降序:> 改为 < ⚠️注意1:此处空值参与排名;不参与排名则公式改为:IF(C2“”,“”,SUMPRODUCT((A:AA2)*(C:C>C2)) 1) ⚠️注意2:相同值的项…...
Redis初始以及安装
"梦却了无影踪,梦仍不曾改动" 初始Redis (1) Redis是什么? 要认识、学习一个软件,最重要的途径无一是去该软件的官方文档里瞅瞅、转悠转悠。 从官方文档的介绍中得知,Redis是一种工作于内存,…...
react导出、导入文件
导出文件: if (res) {let binaryData [];binaryData.push(res);let blobUrl ;blobUrl res;// let blobUrl window.URL.createObjectURL(new Blob(binaryData, { type: application / zip }));console.log(blobUrl);const eleLink document.createElement(a);el…...
(一)Redis——String
以下是在Ubuntu上安装Redis的步骤: 打开终端并输入以下命令以更新软件包列表:sudo apt update输入以下命令以安装Redis:sudo apt install redis-server SET key value GET key key & value 区分大小写 127.0.0.1:6379> set name no…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
CocosCreator 之 JavaScript/TypeScript和Java的相互交互
引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
统计学(第8版)——统计抽样学习笔记(考试用)
一、统计抽样的核心内容与问题 研究内容 从总体中科学抽取样本的方法利用样本数据推断总体特征(均值、比率、总量)控制抽样误差与非抽样误差 解决的核心问题 在成本约束下,用少量样本准确推断总体特征量化估计结果的可靠性(置…...
