cuda编程day001
一、环境:
①、linux cuda-11.3 opecv4.8.0
不知道头文件和库文件路径,用命令查找:
# find /usr/local -name cuda.h 2>/dev/null # 查询cuda头文件路径
/usr/local/cuda-11.3/targets/x86_64-linux/include/cuda.h
# find /usr/local -name libcudart.so 2>/dev/null # 查询库文件路径
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudart.so
# pkg-config --cflags opencv4 # 查看opencv头文件
-I/usr/include/opencv4/opencv -I/usr/include/opencv4
# pkg-config --libs opencv4 查看opencv 库文件
-lopencv_stitching -lopencv_aruco -lopencv_bgsegm -lopencv_bioinspired
-lopencv_ccalib -lopencv_dnn_objdetect -lopencv_dnn_superres -lopencv_dpm
-lopencv_highgui -lopencv_face -lopencv_freetype -lopencv_fuzzy -lopencv_hdf
-lopencv_hfs -lopencv_img_hash -lopencv_line_descriptor -lopencv_quality
-lopencv_reg -lopencv_rgbd -lopencv_saliency -lopencv_shape -lopencv_stereo
-lopencv_structured_light -lopencv_phase_unwrapping -lopencv_superres
-lopencv_optflow -lopencv_surface_matching -lopencv_tracking -lopencv_datasets
-lopencv_text -lopencv_dnn -lopencv_plot -lopencv_ml -lopencv_videostab
-lopencv_videoio -lopencv_viz -lopencv_ximgproc -lopencv_video -lopencv_xobjdetect -lopencv_objdetect -lopencv_calib3d -lopencv_imgcodecs -lopencv_features2d
-lopencv_flann -lopencv_xphoto -lopencv_photo -lopencv_imgproc -lopencv_core
添加到makefile文件里面:
# 这里定义头文件库文件和链接目标没有加-I -L -l,后面用foreach一次性增加
include_paths := /usr/local/cuda-11.3/targets/x86_64-linux/include /usr/include/opencv4 /usr/include/opencv4/opencv
library_paths := /usr/local/cuda-11.3/targets/x86_64-linux/lib
link_librarys := cudart opencv_core opencv_imgcodecs opencv_imgproc $(shell pkg-config --libs opencv4 | sed 's/-l//g')
因为OpenCV的库文件太多,使用shell函数将pkg-config命令的结果作为一个命令执行,并将其分割为单独的库名称,使用了sed命令来移除pkg-config命令返回的库名称中的横线-。这样,link_librarys中的库名称和pkg-config命令返回的库名称都将不带横线。这样就可以正确链接opencv4.8.0中的库了。
二、GPU的大致了解
原文:Bringing HPC Techniques to Deep Learning - Andrew Gibiansky
1、DataParallel模式(DP),Parameter Center模式,主从模式(主卡收集梯度,从卡发送参数和接受结果)

速度受限于主卡到从卡的带宽和速度。我们定义:
D = 模型参数总量,设为1GB
S = 单条线路的传输速率,设为1GB/s,也就是任何显卡传数据到GPU0,或者传输出去都是最大1GB/s
N = 显卡的个数,这里为5
则有:
①. 数据的传输量为4 x D x 2,我们经过了1次Scatter Reduce传输了4D数据量,经过了1次Allgather传输了4D数据量
②. 我们传输耗时理论为4 x 2 x D / S,得到结果约为8秒,公式为:Times = 2(N-1) * D / S
③. 我们传输的数据总量(显卡数相关):Data Transferred = 2(N-1) * D
2、DistributedDataParallel模式(DDP),Ring模式,环形模式

传输速度只与单个显卡的速度和带宽。我们定义:
D = 模型参数总量,设为1GB
S = 单条线路的传输速率,设为1GB/s,也就是任何显卡传数据到GPU0,或者传输出去都是最大1GB/s
N = 显卡的个数,这里为5
①、Scatter-Reduce(循环N-1次):
每个卡都传递其显卡索引对应的那份数据,给相邻的下一个显卡做累加,递所使用的线路是相邻显卡路径,不存在等待堆积,执行一次耗时: 1/N
②、Allgather(循环N-1次):
将每个卡中存在的完整数据发送给相邻下一个卡,执行一次耗时:1/N
则:
- 我们Scatter-Reduce时经过了N-1次1/N大小的数据传输,耗时认为是𝐷/𝑆 * 1/𝑁 * (𝑁−1)
- 我们Allgather时经过了N-1次1/𝑁大小的数据传输,耗时认为是𝐷/𝑆 * 1/𝑁 * (𝑁−1)
- 因此传输的耗时为:𝑇𝑖𝑚𝑒𝑠=2(𝑁−1) * 1/𝑁 * 𝐷/𝑆
- 传输的数据量为:𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑=2(𝑁−1) * 𝐷 / 𝑁
可见:传输的数据量与显卡数量无关了 只与对应的显卡之间的数据传输速度有关
总结:
- DP模式下的主从模式,通信速度受限于单个显卡的通信速率。传递的数据量为2(𝑁−1)𝐷
- N为显卡数,D为模型参数大小
- DDP模式下的RingAllReduce,通信速度受限于显卡邻居间通信速率
- 于PCIE下,受限于主板的PCIE速度,而不是显卡的速度
- 于NVLINK下则最高可达100GB/s甚至更高
- 传递的数据量为2(𝑁−1)*𝐷/𝑁,与显卡数量无关,也因此其效率高
相关文章:
cuda编程day001
一、环境: ①、linux cuda-11.3 opecv4.8.0 不知道头文件和库文件路径,用命令查找: # find /usr/local -name cuda.h 2>/dev/null # 查询cuda头文件路径 /usr/local/cuda-11.3/targets/x86_64-linux/include/cuda.h # find /usr/…...
Java 中使用 ES 高级客户端库 RestHighLevelClient 清理百万级规模历史数据
🎉工作中遇到这样一个需求场景:由于ES数据库中历史数据过多,占用太多的磁盘空间,需要定期地进行清理,在一定程度上可以释放磁盘空间,减轻磁盘空间压力。 🎈在经过调研之后发现,某服务…...
C++最易读手撸神经网络两隐藏层(任意Nodes每层)梯度下降230821a
// c神经网络手撸20梯度下降22_230820a.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。 #include<iostream> #include<vector> #include<iomanip> // setprecision #include<sstream> // getline stof() #include<fstream…...
Leetcode 2235.两整数相加
一、两整数相加 给你两个整数 num1 和 num2,返回这两个整数的和。 示例 1: 输入:num1 12, num2 5 输出:17 解释:num1 是 12,num2 是 5 ,它们的和是 12 5 17 ,因此返回 17 。示例…...
Postman —— postman实现参数化
什么时候会用到参数化 比如:一个模块要用多组不同数据进行测试 验证业务的正确性 Login模块:正确的用户名,密码 成功;错误的用户名,正确的密码 失败 postman实现参数化 在实际的接口测试中,部分参数每…...
LeetCode--HOT100题(41)
目录 题目描述:102. 二叉树的层序遍历(中等)题目接口解题思路代码 PS: 题目描述:102. 二叉树的层序遍历(中等) 给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地&am…...
微信小程序教学系列(6)
第六章:小程序商业化 第一节:小程序的商业模式 在这一节中,我们将探讨微信小程序的商业模式,让你了解如何将你的小程序变成一个赚钱的机器! 1. 广告收入 小程序的商业模式之一是通过广告收入赚钱。你可以在小程序中…...
小程序中的全局配置以及常用的配置项(window,tabBar)
全局配置文件和常用的配置项 app.json: pages:是一个数组,用于记录当前小程序所有页面的存放路径,可以通过它来创建页面 window:全局设置小程序窗口的外观(导航栏,背景,页面的主体) tabBar:设置小程序底部的 tabBar效果 style:是否…...
数据工厂调研及结果展示
数据工厂 一、背景 在开发自测、测试迭代测试、产品验收的过程中,都需要各种各样的前置数据,大致分为如下几类: 账号(实名、权益等级、注册等) 货源(优货、急走、相似、一手、普通货源等) …...
抓包相关,抓包学习
检查网络流量 - 提琴手经典 (telerik.com) Headers Reference - Fiddler Classic (telerik.com) 以上是fiddler官方文档 F12要勾选保留日志 不勾选的话跳转到新页面之前页面的日志不会在下方显示 会保留所有抓到的包 如果重定向到别的页面 F12抓包可能看不到响应信息,但是…...
云原生之使用Docker部署SSCMS内容管理系统
云原生之使用Docker部署SSCMS内容管理系统 一、SSCMS介绍二、本地环境介绍2.1 本地环境规划2.2 本次实践介绍 三、本地环境检查3.1 检查Docker服务状态3.2 检查Docker版本3.3 检查docker compose 版本 四、下载SSCMS镜像五、部署SSCMS内容管理系统5.1 创建SSCMS容器5.2 检查SSC…...
uniapp -- 在组件中拿到pages.json下pages设置navigationBarTitleText这个值?
1:在 pages.json 文件中设置 navigationBarTitleText,例如: {"pages": [{"path": "pages/home/index","style": {"navigationBarTitleText": "首页",&...
Java获取环境变量和运行时环境信息和自定义配置信息
System.getenv() 获取系统环境变量 public static void main1() {Map<String, String> envMap System.getenv();envMap.entrySet().forEach(x-> System.out.println(x.getKey() "" x.getValue())); } System.getenv() 获取的是操作系统环境变量列表&…...
React入门 组件学习笔记
项目页面以组件形式层层搭起来,组件提高复用性,可维护性 目录 一、函数组件 二、类组件 三、 组件的事件绑定 四、获取事件对象 五、事件绑定传递额外参数 六、组件状态 初始化状态 读取状态 修改状态 七、组件-状态修改counter案例 八、this问…...
Windows商店引入SUSE Linux Enterprise Server和openSUSE Leap
在上个月的Build 2017开发者大会上,微软宣布将SUSE,Ubuntu和Fedora引入Windows 商店,反应出微软对开放源码社区的更多承诺。 该公司去年以铂金会员身份加入Linux基金会。现在,微软针对内测者的Windows商店已经开始提供 部分Linux发…...
[NLP]深入理解 Megatron-LM
一. 导读 NVIDIA Megatron-LM 是一个基于 PyTorch 的分布式训练框架,用来训练基于Transformer的大型语言模型。Megatron-LM 综合应用了数据并行(Data Parallelism),张量并行(Tensor Parallelism)和流水线并…...
软考高级系统架构设计师系列论文七十八:论软件产品线技术
软考高级系统架构设计师系列论文七十八:论软件产品线技术 一、摘要二、正文三、总结一、摘要 本人作为某软件公司负责人之一,通过对位于几个省的国家甲级、乙级、丙级设计院的考查和了解,我决定采用软件产品线方式开发系列《设计院信息管理平台》产品。该产品线开发主要有如…...
yolov5中添加ShuffleAttention注意力机制
ShuffleAttention注意力机制简介 关于ShuffleAttention注意力机制的原理这里不再详细解释.论文参考如下链接here yolov5中添加注意力机制 注意力机制分为接收通道数和不接受通道数两种。这次属于接受通道数注意力机制,这种注意力机制由于有通道数要求,所示我们添加的时候…...
Effective C++条款17——以独立语句将newed 对象置入智能指针(资源管理)
假设我们有个函数用来揭示处理程序的优先权,另一个函数用来在某动态分配所得的widget上进行某些带有优先权的处理: void priority(); void processWidget(std::tr1::shared_ptr<Widget>pw, int priority);由于谨记“以对象管理资源”(条款13&…...
奇迹MU服务器如何选择配置?奇迹MU服务器租用
不同的服务器,根据其特点与性能适用于不同的应用场景,为了让你们更好的理解,我们对服务器进行了分类归纳,结合了服务器不同的特点以及价位进行一个区分,帮助我们更好的选择合适的服务器配置。 VPS服务器 VPS服务器又…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
