开源在大数据和分析中的角色

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁
🦄 博客首页——猫头虎的博客🎐
🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺
🌊 《IDEA开发秘籍专栏》学会IDEA常用操作,工作效率翻倍~💐
🌊 《100天精通Golang(基础入门篇)》学会Golang语言,畅玩云原生,走遍大小厂~💐
🪁🍁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬请批评指正!🍁🐥
文章目录
- 开源在大数据和分析中的角色
- 摘要
- 引言
- 开源技术在大数据处理中的应用
- 大数据存储
- 大数据处理
- 开源技术在数据分析中的应用
- 数据清洗和准备
- 数据分析和建模
- 开源技术在数据可视化中的应用
- 可视化工具
- 交互式可视化
- 实际案例:使用Python进行大数据分析
- 总结
- 参考资料
- 原创声明
开源在大数据和分析中的角色
摘要
本文探讨了开源技术在大数据处理和分析领域的重要性,分析了开源工具在处理大数据、构建分析流程和实现数据可视化方面的作用。通过深入研究不同的开源解决方案,我们将了解开源如何在大数据和分析中发挥关键作用。
引言
随着数字化时代的到来,大数据的产生和积累成为了常态。在这样的背景下,高效地处理、分析和提取价值就显得尤为重要。开源技术在这个领域中扮演了关键角色,为开发者提供了丰富的工具和解决方案。本文将深入探讨开源在大数据和分析中的作用和优势。
开源技术在大数据处理中的应用
大数据存储
开源技术提供了多种存储解决方案,如Hadoop分布式文件系统(HDFS)和Apache Cassandra。这些工具可以高效地存储海量数据,保证数据的可靠性和可扩展性。
大数据处理
Hadoop生态系统中的工具如MapReduce和Spark可以对大数据进行分布式处理,实现并行计算。这有助于加速数据处理过程,提高效率。
开源技术在数据分析中的应用
数据清洗和准备
开源工具如Pandas和OpenRefine可以用于数据清洗和预处理,确保数据的准确性和一致性。
数据分析和建模
开源编程语言如Python和R提供了丰富的数据分析库,帮助开发者进行统计分析、机器学习等工作。
开源技术在数据可视化中的应用
可视化工具
开源可视化工具如Matplotlib、D3.js和Tableau Public可以将复杂的数据转化为易于理解和传达的可视化图表。
交互式可视化
开源工具提供了交互式可视化的能力,使用户可以自由探索数据、调整参数,从而深入理解数据背后的模式和趋势。
实际案例:使用Python进行大数据分析
让我们以一个使用Python进行大数据分析的案例来演示开源技术在实际应用中的角色。
import pandas as pd
import matplotlib.pyplot as plt# 读取大数据文件
data = pd.read_csv('large_dataset.csv')# 数据清洗和处理
cleaned_data = data.dropna()# 数据分析
summary = cleaned_data.describe()# 数据可视化
plt.bar(summary.columns, summary.loc['mean'])
plt.xlabel('Columns')
plt.ylabel('Mean Value')
plt.title('Mean Values of Columns')
plt.show()
总结
开源技术在大数据处理和分析领域发挥着关键作用,为开发者提供了丰富的工具和解决方案。从大数据存储、处理,到数据分析和可视化,开源工具为处理海量数据和从中提取价值提供了有力支持。
参考资料
- Marz, N., & Warren, J. (2015). Big Data: Principles and best practices of scalable realtime data systems. Manning Publications.
- McKinney, W. (2017). Python for Data Analysis. O’Reilly Media.
- Wickham, H., & Grolemund, G. (2017). R for Data Science. O’Reilly Media.
- Abadi, D. J., & Chu, A. (2016). Theoretical foundations of big data computations. Communications of the ACM, 59(7), 78-87.
- He, H., & Wu, D. (2019). Tensorflow: A system for large-scale machine learning. In OSDI (Vol. 16, pp. 265-283).
- Waskom, M. L. (2021). seaborn: statistical data visualization. Journal of Open Source Software, 6(60), 3021.
原创声明
======= ·
- 原创作者: 猫头虎
作者wx: [ libin9iOak ]
| 学习 | 复习 |
|---|---|
| ✔ | ✔ |
本文为原创文章,版权归作者所有。未经许可,禁止转载、复制或引用。
作者保证信息真实可靠,但不对准确性和完整性承担责任。
未经许可,禁止商业用途。
如有疑问或建议,请联系作者。
感谢您的支持与尊重。
点击
下方名片,加入IT技术核心学习团队。一起探索科技的未来,共同成长。
相关文章:
开源在大数据和分析中的角色
🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…...
C#,《小白学程序》第四课:数学计算
1 文本格式 /// <summary> /// 《小白学程序》第四课:数学计算 /// 这节课超级简单,就是计算成绩的平均值(平均分) /// 这个是老师们经常做的一件事。 /// </summary> /// <param name"sender"></…...
SparkML机器学习
SparkML 机器学习: 让机器学会人的学习行为, 通过算法和数据来模拟或实现人类的学习行为,使之不断改善自身性能。 机器学习的步骤: 加载数据特征工程 数据筛选: 选取适合训练的特征列, 例如用户id就不适合, 因为它特性太显著.数据转化: 将字符串的数据转化数据类型…...
vue Promise 对象 等待所有异步处理完成 再继续处理
1 定义数据集合 用来搜集所有数据 let promises []; // 用来存储所有的 Promise 对象 2 promise对象 异步 返回数据 同时添加数据到promises 列表 // 依次读取列表元素的表 for (let symbol of symbolList) {let promise new Promise((resolve, reject) > { // 将请求…...
【业务功能篇84】微服务SpringCloud-ElasticSearch-Kibanan-电商实例应用
一、商品上架功能 ElasticSearch实现商城系统中全文检索的流程。 1.商品ES模型 商品的映射关系 PUT product {"mappings": {"properties": {"skuId": {"type": "long"},"spuId": {"type": "ke…...
图像检索,目标检测map的实现
一、图像检索指标Rank1,map 参考:https://blog.csdn.net/weixin_41427758/article/details/81188164?spm1001.2014.3001.5506 1.Rank1: rank-k:算法返回的排序列表中,前k位为存在检索目标则称为rank-k命中。 常用的为rank1:首…...
Docker容器学习:Dockerfile制作Web应用系统nginx镜像
目录 编写Dockerfile 1.文件内容需求: 2.编写Dockerfile: 3.开始构建镜像 4.现在我们运行一个容器,查看我们的网页是否可访问 推送镜像到私有仓库 1.把要上传的镜像打上合适的标签 2.登录harbor仓库 3.上传镜像 编写Dockerfile 1.文…...
【vue3.0 引入Element Plus步骤与使用】
全局引入Element Plus 1. 安装 Element Plus2. 引入 Element Plus3. 使用 Element Plus 组件 Element Plus 是一个基于 Vue 3.0 的 UI 组件库,它是 Element UI 的升级版。Element Plus 的设计理念是简单、易用、高效,具有良好的可定制性和扩展性。下面是…...
金融客户敏感信息的“精细化管控”新范式
目 录 01 客户信息保护三箭齐发,金融IT亟需把握四个原则 02 制度制约阻碍信息保护的精细化管控 03 敏感信息精细化管控范式的6个关键设计 04 分阶段实施,形成敏感信息管控的长效运营的机制 05 未来,新挑战与新机遇并存 …...
Starrocks--数据插入方式
Starrocks 数据插入方式 Starrocks是一款快速、可伸缩的分布式OLAP数据库,支持多种数据插入方式。下面将详细介绍几种常用的数据插入方式,并提供选择建议。 1. 批量加载(Bulk Load) 批量加载是通过将本地文件或HDFS文件导入到S…...
Java学数据结构(3)——树Tree B树 红黑树 Java标准库中的集合Set与映射Map 使用多个映射Map的案例
目录 引出B树插入insert删除remove 红黑树(red black tree)自底向上的插入自顶向下红黑树自顶向下的删除 标准库中的集合Set与映射Map关于Set接口关于Map接口TreeSet类和TreeMap类的实现使用多个映射Map:一个词典的案例方案一:使用一个Map对象方案二&…...
Vue3.0极速入门 - 环境安装新建项目
Vue介绍 Vue.js 是什么 Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架。与其它大型框架不同的是,Vue 被设计为可以自底向上逐层应用。Vue 的核心库只关注视图层,不仅易于上手,还便于与第三方库或既有项目整…...
android 使用libyuv 图像转换
libyuv 是一个开源的图像处理库,它提供了一系列函数用于处理YUV格式的图像。在 JNI(Java Native Interface)中使用 libyuv,你需要先在你的 C 代码中包含 libyuv,然后编写 JNI 函数来调用 libyuv 的函数。 以下是一个简…...
奥比中光:进击具身智能,打造机器人之眼
大数据产业创新服务媒体 ——聚焦数据 改变商业 跨过奇点的生成式人工智能是一个缸中大脑,只有赋予形体,才能与物理世界产生互动。 在5月的ITF世界半导体大会上,英伟达创世人兼CEO黄仁勋说,人工智能的下一波浪潮将是具身智能。 8…...
微信小程序报错: SyntaxError: Cannot use import statement outside a module
微信小程序数据绑定,导包出现了: “SyntaxError: Cannot use import statement outside a module” 排查问题步骤记录,共勉 1.出现问题代码: import {createStoreBindings} from "mobx-miniprogram-bindings"import {store} from …...
Ruoyi微服务启动流程
1、执行sql 执行sql ry-quarty.sql ry_2023706.sql 到ry-cloud 数据库 2、下载nacos 修改配置文件 修改连接地址 启动nacos 看到下面的配置文件即为成功 修改配置文件里面的数据库连接信息 3、修改nacos 为单机启动 4、启动项目即可 nacos自取 链接: https://pan.baidu…...
Android scrollTo、scrollBy、以及scroller详解 自定义ViewPager
Scroller VelocityTracker VelocityTracker 是一个速度跟踪器,通过用户操作时(通常在 View 的 onTouchEvent 方法中)传进去一系列的 Event,该类就可以计算出用户手指滑动的速度,开发者可以方便地获取这些参数去做其他…...
Aidex 移动端快速开发框架# RuoYi-Uniapp项目,uniapp vue app项目跨域问题
参考地址: manifest.json官方配置文档:manifest.json 应用配置 | uni-app官网 Chrome 调试跨域问题解决方案之插件篇: uni-app H5跨域问题解决方案(CORS、Cross-Origin) - DCloud问答 其实uni-app官方有解决跨域的办…...
JVM7:垃圾回收是什么?从运行时数据区看垃圾回收到底回收哪块区域?垃圾回收如何去回收?垃圾回收策略,引用计数算法及循环引用问题,可达性分析算法
垃圾回收是什么?从运行时数据区看垃圾回收到底回收哪块区域? 垃圾回收如何去回收? 垃圾回收策略 引用计数算法及循环引用问题 可达性分析算法 垃圾回收是什么?从运行时数据区看垃圾回收到底回收哪块区域?垃圾回收如何去…...
NFT Insider #104:The Sandbox:全新土地销售活动 Turkishverse 来袭
引言:NFT Insider由NFT收藏组织WHALE Members、BeepCrypto联合出品,浓缩每周NFT新闻,为大家带来关于NFT最全面、最新鲜、最有价值的讯息。每期周报将从NFT市场数据,艺术新闻类,游戏新闻类,虚拟世界类&#…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)
漏洞概览 漏洞名称:Apache Flink REST API 任意文件读取漏洞CVE编号:CVE-2020-17519CVSS评分:7.5影响版本:Apache Flink 1.11.0、1.11.1、1.11.2修复版本:≥ 1.11.3 或 ≥ 1.12.0漏洞类型:路径遍历&#x…...
聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇
根据 QYResearch 发布的市场报告显示,全球市场规模预计在 2031 年达到 9848 万美元,2025 - 2031 年期间年复合增长率(CAGR)为 3.7%。在竞争格局上,市场集中度较高,2024 年全球前十强厂商占据约 74.0% 的市场…...
【java】【服务器】线程上下文丢失 是指什么
目录 ■前言 ■正文开始 线程上下文的核心组成部分 为什么会出现上下文丢失? 直观示例说明 为什么上下文如此重要? 解决上下文丢失的关键 总结 ■如果我想在servlet中使用线程,代码应该如何实现 推荐方案:使用 ManagedE…...
Python爬虫(52)Scrapy-Redis分布式爬虫架构实战:IP代理池深度集成与跨地域数据采集
目录 一、引言:当爬虫遭遇"地域封锁"二、背景解析:分布式爬虫的两大技术挑战1. 传统Scrapy架构的局限性2. 地域限制的三种典型表现 三、架构设计:Scrapy-Redis 代理池的协同机制1. 分布式架构拓扑图2. 核心组件协同流程 四、技术实…...
