当前位置: 首页 > news >正文

开源在大数据和分析中的角色

在这里插入图片描述

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁
🦄 博客首页——猫头虎的博客🎐
🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺
🌊 《IDEA开发秘籍专栏》学会IDEA常用操作,工作效率翻倍~💐
🌊 《100天精通Golang(基础入门篇)》学会Golang语言,畅玩云原生,走遍大小厂~💐

🪁🍁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬请批评指正!🍁🐥

文章目录

    • 开源在大数据和分析中的角色
      • 摘要
      • 引言
      • 开源技术在大数据处理中的应用
        • 大数据存储
        • 大数据处理
      • 开源技术在数据分析中的应用
        • 数据清洗和准备
        • 数据分析和建模
      • 开源技术在数据可视化中的应用
        • 可视化工具
        • 交互式可视化
      • 实际案例:使用Python进行大数据分析
      • 总结
      • 参考资料
  • 原创声明

在这里插入图片描述

开源在大数据和分析中的角色

摘要

本文探讨了开源技术在大数据处理和分析领域的重要性,分析了开源工具在处理大数据、构建分析流程和实现数据可视化方面的作用。通过深入研究不同的开源解决方案,我们将了解开源如何在大数据和分析中发挥关键作用。

引言

随着数字化时代的到来,大数据的产生和积累成为了常态。在这样的背景下,高效地处理、分析和提取价值就显得尤为重要。开源技术在这个领域中扮演了关键角色,为开发者提供了丰富的工具和解决方案。本文将深入探讨开源在大数据和分析中的作用和优势。

开源技术在大数据处理中的应用

大数据存储

开源技术提供了多种存储解决方案,如Hadoop分布式文件系统(HDFS)和Apache Cassandra。这些工具可以高效地存储海量数据,保证数据的可靠性和可扩展性。

大数据处理

Hadoop生态系统中的工具如MapReduce和Spark可以对大数据进行分布式处理,实现并行计算。这有助于加速数据处理过程,提高效率。

开源技术在数据分析中的应用

数据清洗和准备

开源工具如Pandas和OpenRefine可以用于数据清洗和预处理,确保数据的准确性和一致性。

数据分析和建模

开源编程语言如Python和R提供了丰富的数据分析库,帮助开发者进行统计分析、机器学习等工作。

开源技术在数据可视化中的应用

可视化工具

开源可视化工具如Matplotlib、D3.js和Tableau Public可以将复杂的数据转化为易于理解和传达的可视化图表。

交互式可视化

开源工具提供了交互式可视化的能力,使用户可以自由探索数据、调整参数,从而深入理解数据背后的模式和趋势。

实际案例:使用Python进行大数据分析

让我们以一个使用Python进行大数据分析的案例来演示开源技术在实际应用中的角色。

import pandas as pd
import matplotlib.pyplot as plt# 读取大数据文件
data = pd.read_csv('large_dataset.csv')# 数据清洗和处理
cleaned_data = data.dropna()# 数据分析
summary = cleaned_data.describe()# 数据可视化
plt.bar(summary.columns, summary.loc['mean'])
plt.xlabel('Columns')
plt.ylabel('Mean Value')
plt.title('Mean Values of Columns')
plt.show()

总结

开源技术在大数据处理和分析领域发挥着关键作用,为开发者提供了丰富的工具和解决方案。从大数据存储、处理,到数据分析和可视化,开源工具为处理海量数据和从中提取价值提供了有力支持。

参考资料

  1. Marz, N., & Warren, J. (2015). Big Data: Principles and best practices of scalable realtime data systems. Manning Publications.
  2. McKinney, W. (2017). Python for Data Analysis. O’Reilly Media.
  3. Wickham, H., & Grolemund, G. (2017). R for Data Science. O’Reilly Media.
  4. Abadi, D. J., & Chu, A. (2016). Theoretical foundations of big data computations. Communications of the ACM, 59(7), 78-87.
  5. He, H., & Wu, D. (2019). Tensorflow: A system for large-scale machine learning. In OSDI (Vol. 16, pp. 265-283).
  6. Waskom, M. L. (2021). seaborn: statistical data visualization. Journal of Open Source Software, 6(60), 3021.

原创声明

======= ·

  • 原创作者: 猫头虎

作者wx: [ libin9iOak ]

学习复习

本文为原创文章,版权归作者所有。未经许可,禁止转载、复制或引用。

作者保证信息真实可靠,但不对准确性和完整性承担责任

未经许可,禁止商业用途。

如有疑问或建议,请联系作者。

感谢您的支持与尊重。

点击下方名片,加入IT技术核心学习团队。一起探索科技的未来,共同成长。

相关文章:

开源在大数据和分析中的角色

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…...

C#,《小白学程序》第四课:数学计算

1 文本格式 /// <summary> /// 《小白学程序》第四课&#xff1a;数学计算 /// 这节课超级简单&#xff0c;就是计算成绩的平均值&#xff08;平均分&#xff09; /// 这个是老师们经常做的一件事。 /// </summary> /// <param name"sender"></…...

SparkML机器学习

SparkML 机器学习: 让机器学会人的学习行为, 通过算法和数据来模拟或实现人类的学习行为&#xff0c;使之不断改善自身性能。 机器学习的步骤: 加载数据特征工程 数据筛选: 选取适合训练的特征列, 例如用户id就不适合, 因为它特性太显著.数据转化: 将字符串的数据转化数据类型…...

vue Promise 对象 等待所有异步处理完成 再继续处理

1 定义数据集合 用来搜集所有数据 let promises []; // 用来存储所有的 Promise 对象 2 promise对象 异步 返回数据 同时添加数据到promises 列表 // 依次读取列表元素的表 for (let symbol of symbolList) {let promise new Promise((resolve, reject) > { // 将请求…...

【业务功能篇84】微服务SpringCloud-ElasticSearch-Kibanan-电商实例应用

一、商品上架功能 ElasticSearch实现商城系统中全文检索的流程。 1.商品ES模型 商品的映射关系 PUT product {"mappings": {"properties": {"skuId": {"type": "long"},"spuId": {"type": "ke…...

图像检索,目标检测map的实现

一、图像检索指标Rank1,map 参考&#xff1a;https://blog.csdn.net/weixin_41427758/article/details/81188164?spm1001.2014.3001.5506 1.Rank1: rank-k&#xff1a;算法返回的排序列表中&#xff0c;前k位为存在检索目标则称为rank-k命中。 常用的为rank1&#xff1a;首…...

Docker容器学习:Dockerfile制作Web应用系统nginx镜像

目录 编写Dockerfile 1.文件内容需求&#xff1a; 2.编写Dockerfile&#xff1a; 3.开始构建镜像 4.现在我们运行一个容器&#xff0c;查看我们的网页是否可访问 推送镜像到私有仓库 1.把要上传的镜像打上合适的标签 2.登录harbor仓库 3.上传镜像 编写Dockerfile 1.文…...

【vue3.0 引入Element Plus步骤与使用】

全局引入Element Plus 1. 安装 Element Plus2. 引入 Element Plus3. 使用 Element Plus 组件 Element Plus 是一个基于 Vue 3.0 的 UI 组件库&#xff0c;它是 Element UI 的升级版。Element Plus 的设计理念是简单、易用、高效&#xff0c;具有良好的可定制性和扩展性。下面是…...

金融客户敏感信息的“精细化管控”新范式

目 录 01 客户信息保护三箭齐发&#xff0c;金融IT亟需把握四个原则‍ 02 制度制约阻碍信息保护的精细化管控 ‍‍‍‍‍‍‍ 03 敏感信息精细化管控范式的6个关键设计 04 分阶段实施&#xff0c;形成敏感信息管控的长效运营的机制 05 未来&#xff0c;新挑战与新机遇并存 …...

Starrocks--数据插入方式

Starrocks 数据插入方式 Starrocks是一款快速、可伸缩的分布式OLAP数据库&#xff0c;支持多种数据插入方式。下面将详细介绍几种常用的数据插入方式&#xff0c;并提供选择建议。 1. 批量加载&#xff08;Bulk Load&#xff09; 批量加载是通过将本地文件或HDFS文件导入到S…...

Java学数据结构(3)——树Tree B树 红黑树 Java标准库中的集合Set与映射Map 使用多个映射Map的案例

目录 引出B树插入insert删除remove 红黑树(red black tree)自底向上的插入自顶向下红黑树自顶向下的删除 标准库中的集合Set与映射Map关于Set接口关于Map接口TreeSet类和TreeMap类的实现使用多个映射Map&#xff1a;一个词典的案例方案一&#xff1a;使用一个Map对象方案二&…...

Vue3.0极速入门 - 环境安装新建项目

Vue介绍 Vue.js 是什么 Vue (读音 /vjuː/&#xff0c;类似于 view) 是一套用于构建用户界面的渐进式框架。与其它大型框架不同的是&#xff0c;Vue 被设计为可以自底向上逐层应用。Vue 的核心库只关注视图层&#xff0c;不仅易于上手&#xff0c;还便于与第三方库或既有项目整…...

android 使用libyuv 图像转换

libyuv 是一个开源的图像处理库&#xff0c;它提供了一系列函数用于处理YUV格式的图像。在 JNI&#xff08;Java Native Interface&#xff09;中使用 libyuv&#xff0c;你需要先在你的 C 代码中包含 libyuv&#xff0c;然后编写 JNI 函数来调用 libyuv 的函数。 以下是一个简…...

奥比中光:进击具身智能,打造机器人之眼

大数据产业创新服务媒体 ——聚焦数据 改变商业 跨过奇点的生成式人工智能是一个缸中大脑&#xff0c;只有赋予形体&#xff0c;才能与物理世界产生互动。 在5月的ITF世界半导体大会上&#xff0c;英伟达创世人兼CEO黄仁勋说&#xff0c;人工智能的下一波浪潮将是具身智能。 8…...

微信小程序报错: SyntaxError: Cannot use import statement outside a module

微信小程序数据绑定&#xff0c;导包出现了: “SyntaxError: Cannot use import statement outside a module” 排查问题步骤记录&#xff0c;共勉 1.出现问题代码&#xff1a; import {createStoreBindings} from "mobx-miniprogram-bindings"import {store} from …...

Ruoyi微服务启动流程

1、执行sql 执行sql ry-quarty.sql ry_2023706.sql 到ry-cloud 数据库 2、下载nacos 修改配置文件 修改连接地址 启动nacos 看到下面的配置文件即为成功 修改配置文件里面的数据库连接信息 3、修改nacos 为单机启动 4、启动项目即可 nacos自取 链接: https://pan.baidu…...

Android scrollTo、scrollBy、以及scroller详解 自定义ViewPager

Scroller VelocityTracker VelocityTracker 是一个速度跟踪器&#xff0c;通过用户操作时&#xff08;通常在 View 的 onTouchEvent 方法中&#xff09;传进去一系列的 Event&#xff0c;该类就可以计算出用户手指滑动的速度&#xff0c;开发者可以方便地获取这些参数去做其他…...

Aidex 移动端快速开发框架# RuoYi-Uniapp项目,uniapp vue app项目跨域问题

参考地址&#xff1a; manifest.json官方配置文档&#xff1a;manifest.json 应用配置 | uni-app官网 Chrome 调试跨域问题解决方案之插件篇&#xff1a; uni-app H5跨域问题解决方案&#xff08;CORS、Cross-Origin&#xff09; - DCloud问答 其实uni-app官方有解决跨域的办…...

JVM7:垃圾回收是什么?从运行时数据区看垃圾回收到底回收哪块区域?垃圾回收如何去回收?垃圾回收策略,引用计数算法及循环引用问题,可达性分析算法

垃圾回收是什么&#xff1f;从运行时数据区看垃圾回收到底回收哪块区域&#xff1f; 垃圾回收如何去回收&#xff1f; 垃圾回收策略 引用计数算法及循环引用问题 可达性分析算法 垃圾回收是什么&#xff1f;从运行时数据区看垃圾回收到底回收哪块区域&#xff1f;垃圾回收如何去…...

NFT Insider #104:The Sandbox:全新土地销售活动 Turkishverse 来袭

引言&#xff1a;NFT Insider由NFT收藏组织WHALE Members、BeepCrypto联合出品&#xff0c;浓缩每周NFT新闻&#xff0c;为大家带来关于NFT最全面、最新鲜、最有价值的讯息。每期周报将从NFT市场数据&#xff0c;艺术新闻类&#xff0c;游戏新闻类&#xff0c;虚拟世界类&#…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候&#xff0c;难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵&#xff0c;或者买了二手 iPhone 却被原来的 iCloud 账号锁住&#xff0c;这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...