当前位置: 首页 > news >正文

强化学习系列--时序差分学习方法(SARSA算法)

强化学习系列--时序差分学习方法(SARSA算法)

  • 介绍
    • 示例代码

介绍

SARSA(State-Action-Reward-State-Action)是一种强化学习算法,用于解决马尔可夫决策过程(MDP)中的问题。SARSA算法属于基于值的强化学习算法,用于学习最优策略。

在SARSA算法中,智能体通过与环境进行交互来学习。它基于当前状态、选择的动作、获得的奖励、下一个状态和下一个动作来更新价值函数(或者动作值函数),并根据更新后的价值函数选择下一个动作。

SARSA算法的更新规则如下:

Q(s, a) = Q(s, a) + α * (r(s,a,s’) + γ * Q(s’, a’) - Q(s, a))

其中,Q(s, a) 表示在状态 s 执行动作 a 的动作值函数,α 是学习率,r 是即时奖励,γ 是折扣因子,s’ 是下一个状态,a’ 是在下一个状态下选择的动作。

SARSA算法的核心思想是根据当前策略进行动作选择,并根据选择的动作和环境的反馈进行更新。它使用一种称为ε-greedy策略的方法,即以ε的概率选择一个随机动作,以1-ε的概率选择当前最优的动作。这样可以在探索和利用之间进行权衡,有助于智能体探索新的状态和动作,并最终学习到最优策略。

SARSA算法的步骤如下:

  1. 初始化动作值函数 Q(s, a) 为任意值;
  2. 选择初始状态 s;
  3. 根据当前策略选择动作 a;
  4. 执行动作 a,观察下一个状态 s’ 和即时奖励 r;
  5. 根据当前策略选择下一个动作 a’;
  6. 更新动作值函数:Q(s, a) = Q(s, a) + α * (r + γ * Q(s’, a’) - Q(s, a));
  7. 将状态更新为下一个状态:s = s’;
  8. 将动作更新为下一个动作:a = a’;
  9. 重复步骤3到8,直到达到终止状态。

通过不断与环境交互和更新动作值函数,SARSA算法能够逐步学习到最优策略,并在最优策略下获得最大的累积奖励。

示例代码

以下是一个简单的示例代码,演示了如何使用SARSA算法来解决一个简单的强化学习问题:

import numpy as np# 定义环境
num_states = 5
num_actions = 3
Q = np.zeros((num_states, num_actions))  # 动作值函数
rewards = np.array([[-1, 0, -1],  # 状态0的奖励表[-1, -1, 0],  # 状态1的奖励表[0, -1, -1],  # 状态2的奖励表[-1, 0, -1],  # 状态3的奖励表[-1, -1, 0]])  # 状态4的奖励表
gamma = 0.8  # 折扣因子
alpha = 0.1  # 学习率
epsilon = 0.1  # ε-greedy策略的ε值# 定义SARSA算法
def sarsa(num_episodes):for episode in range(num_episodes):state = 0  # 初始状态action = epsilon_greedy(state)  # 初始动作while state != num_states - 1:  # 直到达到终止状态next_state = action  # 下一个状态为当前动作next_action = epsilon_greedy(next_state)  # 下一个动作# 使用SARSA更新动作值函数Q[state, action] += alpha * (rewards[state, action] + gamma * Q[next_state, next_action] - Q[state, action])state = next_stateaction = next_action# ε-greedy策略
def epsilon_greedy(state):if np.random.uniform(0, 1) < epsilon:action = np.random.randint(num_actions)  # 随机选择一个动作else:action = np.argmax(Q[state])  # 选择具有最大动作值的动作return action# 运行SARSA算法
sarsa(num_episodes=100)# 输出结果
print("最优动作值函数:")
print(Q)

这个示例代码是一个简单的强化学习问题,具有5个状态和3个动作。在每个状态下,根据rewards矩阵给出的即时奖励,智能体通过SARSA算法逐步更新动作值函数Q。最后,输出最优的动作值函数Q。

相关文章:

强化学习系列--时序差分学习方法(SARSA算法)

强化学习系列--时序差分学习方法&#xff08;SARSA算法&#xff09; 介绍示例代码 介绍 SARSA&#xff08;State-Action-Reward-State-Action&#xff09;是一种强化学习算法&#xff0c;用于解决马尔可夫决策过程&#xff08;MDP&#xff09;中的问题。SARSA算法属于基于值的…...

深度学习9:简单理解生成对抗网络原理

目录 生成算法 生成对抗网络&#xff08;GAN&#xff09; “生成”部分 “对抗性”部分 GAN如何运作&#xff1f; 培训GAN的技巧&#xff1f; GAN代码示例 如何改善GAN&#xff1f; 结论 生成算法 您可以将生成算法分组到三个桶中的一个&#xff1a; 鉴于标签&#…...

adb shell setprop 、开发者选项

App性能调试详解 Android App性能监控工具 更多系统属性参考 一、开启 GPU Render 的profiling bar&#xff1a; Gpu渲染速度 adb shell setprop debug.hwui.profile true adb shell setprop debug.hwui.profile visual_bars adb shell setprop debug.hwui.profile visual…...

性能测试面试问题,一周拿3个offer不嫌多

性能测试的三个核心原理是什么&#xff1f; 1.基于协议。性能测试的对象是网络分布式架构的软件&#xff0c;而网络分布式架构的核心是网络协议 2.多线程。人的大脑是单线程的&#xff0c;电脑的cpu是多线程的。性能测试就是利用多线程的技术模拟多用户去负载 3.模拟真实场景。…...

Android Bitmap压缩

Android View截屏长图拼接&#xff08;RecyclerView&#xff09; 我们在实际使用中&#xff0c;往往图片转化成Bitmap&#xff0c;对Bitmap操作的时候&#xff08;如:截屏分享等&#xff09;&#xff0c;可能Bitmap会过大&#xff0c;导致无视实现对应功能。那么我们就需要对B…...

不同子网络中的通信过程

从输入www.baidu.com经历了什么 一、DNS&#xff08;网址->IP&#xff09; 二、ARP&#xff08;IP->MAC&#xff09; A->B&#xff1a;有数据发送&#xff0c;数据封装ip之后发现没有主机B的mac地址。然后ARP在本网段广播&#xff1a;检查目标地址和源地址是否在同一…...

Ubuntu Touch OTA-2 推出,支持 Fairphone 3 和 F(x)tec Pro1 X

导读UBports 基金会近日宣布为基于 Ubuntu 20.04 LTS (Focal Fossa) 的 Ubuntu Touch 移动操作系统发布并全面提供 OTA-2 软件更新。 Ubuntu Touch OTA-2 在首次 OTA 更新整整四个月后发布&#xff0c;支持新设备&#xff0c;包括 Fairphone 3、F(x)tec Pro1 X 和 Vollaphone X…...

【网络】数据链路层——MAC帧协议 | ARP协议

&#x1f431;作者&#xff1a;一只大喵咪1201 &#x1f431;专栏&#xff1a;《网络》 &#x1f525;格言&#xff1a;你只管努力&#xff0c;剩下的交给时间&#xff01; 来到数据链路层后&#xff0c;完整的数据被叫做数据帧&#xff0c;习惯上称之为MAC帧。 MAC帧协议 | A…...

【Spring Boot】Spring Boot自动加载机制:简化应用程序的启动

在微服务盛行的今天&#xff0c;快速搭建和启动应用程序变得至关重要。Spring Boot作为Java生态系统中主流的框架&#xff0c;其自动加载机制使得开发者能够快速构建和启动应用程序。本文将详细介绍Spring Boot的自动加载机制&#xff0c;并通过代码示例加以说明。 首先&#…...

centos7搭建apache作为文件站后,其他人无法访问解决办法

在公司内网的一个虚拟机上搭建了httpsd服务&#xff0c;准备作为内部小伙伴们的文件站&#xff0c;但是搭建好之后发现别的小伙伴是无法访问我机器的。 于是寻找一下原因&#xff0c;排查步骤如下&#xff1a; 1.netstat -lnp 和 ps aux 先看下端口和 服务情况 发现均正常 2.…...

【开个空调】语音识别+红外发射

废话少说&#xff0c;直接上空调板子&#xff1a;YAPOF3。红外接收发射模块用的某宝上发现的YF-33(遗憾解码还没搞清楚&#xff0c;不然做个lirc.conf功能才多)。最后是语音识别用的幻尔的&#xff0c;某宝自然也有&#xff0c;它是个i2c的接口。 本篇胡说八道其实纯粹为了留个…...

【hibernate validator】(二)声明和验证Bean约束

首发博客地址 https://blog.zysicyj.top/ 一、声明bean约束 1. 字段级别约束 不支持静态类型字段 验证引擎直接访问实例变量&#xff0c;不会调用属性的访问器 在验证字节码增强的对象时&#xff0c;应适用属性级别约束&#xff0c;因为字节码增库无法通过反射确定字段访问 pac…...

Redis持久化机制之RDB,AOF与混合AOF

Redis是一款高性能的NoSQL数据库&#xff0c;它的速度非常快&#xff0c;同时也支持多种持久化机制&#xff0c;其中最常用的是RDB和AOF&#xff0c;还有一种混合AOF方式。那么这些持久化机制到底是什么&#xff0c;有什么不同呢&#xff1f; RDB是Redis默认的持久化方式&…...

为啥外卖小哥宁愿600一月租电动车,也不花2、3千买一辆送外卖!背后的原因......

大家好&#xff01;我是菜哥&#xff01; 又到周末了&#xff0c;我们聊点非技术的东西。最近知乎“为何那些穿梭于城市大街小巷的外卖小哥&#xff0c;宁愿每月掏出600块租一辆电动车&#xff0c;也不愿意掏出2、3千买一辆呢&#xff1f;” 冲上热榜&#xff01; 听起来有点“…...

分布式定时任务框架Quartz总结和实践(2)—持久化到Mysql数据库

本文主要介绍分布式定时任务框架Quartz集成SpringBoot持久化数据到Mysql数据库的操作&#xff0c;上一篇文章使用Quartz创建定时任务都是保存在内存中&#xff0c;如果服务重启定时任务就会失效&#xff0c;所以Quartz官方也提供将定时任务等信息持久化到Mysql数据库的功能&…...

Linux 服务器搭建配置,开发效率一飞冲天 - Centos 篇

大家好&#xff0c;我是比特桃。最近白嫖了一台 Centos 云服务器&#xff0c;用来做日常开发&#xff0c;特此记录一下搭建配置的过程。 我之前有篇文章是基于 Ubuntu 的&#xff1a;Linux 服务器搭建配置&#xff0c;开发效率一飞冲天 - Ubuntu 篇 如同个人电脑一样&#xff0…...

Day46|leetcode 139.单词拆分

leetcode 139.单词拆分 题目链接&#xff1a;139. 单词拆分 - 力扣&#xff08;LeetCode&#xff09; 视频链接&#xff1a;动态规划之完全背包&#xff0c;你的背包如何装满&#xff1f;| LeetCode&#xff1a;139.单词拆分_哔哩哔哩_bilibili 题目概述 给你一个字符串 s 和一…...

深入理解高并发编程 - Thread 类的 stop () 和 interrupt ()

stop() stop() 方法被用于停止线程。然而&#xff0c;需要注意的是&#xff0c;stop() 方法已经被标记为已废弃&#xff08;deprecated&#xff09;&#xff0c;并且不推荐使用。这是因为使用该方法可能导致不可预料的问题和数据不一致性&#xff0c;因此它被认为是不安全的。…...

C语言之三子棋游戏实现篇

目录 主函数test.c 菜单函数 选择实现 游戏函数 &#xff08;函数调用&#xff09; 打印棋盘数据 打印展示棋盘 玩家下棋 电脑下棋 判断输赢 循环 test.c总代码 头文件&函数声明game.h 头文件的包含 游戏符号声明 游戏函数声明 game.h总代码 游戏函数ga…...

jupyter notebook 插件nbextensions的安装

安装步骤&#xff1a; 1、打开 jupyter notebook&#xff0c;新建一个 python 文件&#xff1b; 2、 分别输入以下代码&#xff0c;然后运行&#xff0c;出现 warning 不影响使用&#xff0c;如果出现 errors&#xff0c;则说明下载有问题&#xff1a; !python -m pip install…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...