强化学习系列--时序差分学习方法(SARSA算法)
强化学习系列--时序差分学习方法(SARSA算法)
- 介绍
- 示例代码
介绍
SARSA(State-Action-Reward-State-Action)是一种强化学习算法,用于解决马尔可夫决策过程(MDP)中的问题。SARSA算法属于基于值的强化学习算法,用于学习最优策略。
在SARSA算法中,智能体通过与环境进行交互来学习。它基于当前状态、选择的动作、获得的奖励、下一个状态和下一个动作来更新价值函数(或者动作值函数),并根据更新后的价值函数选择下一个动作。
SARSA算法的更新规则如下:
Q(s, a) = Q(s, a) + α * (r(s,a,s’) + γ * Q(s’, a’) - Q(s, a))
其中,Q(s, a) 表示在状态 s 执行动作 a 的动作值函数,α 是学习率,r 是即时奖励,γ 是折扣因子,s’ 是下一个状态,a’ 是在下一个状态下选择的动作。
SARSA算法的核心思想是根据当前策略进行动作选择,并根据选择的动作和环境的反馈进行更新。它使用一种称为ε-greedy策略的方法,即以ε的概率选择一个随机动作,以1-ε的概率选择当前最优的动作。这样可以在探索和利用之间进行权衡,有助于智能体探索新的状态和动作,并最终学习到最优策略。
SARSA算法的步骤如下:
- 初始化动作值函数 Q(s, a) 为任意值;
- 选择初始状态 s;
- 根据当前策略选择动作 a;
- 执行动作 a,观察下一个状态 s’ 和即时奖励 r;
- 根据当前策略选择下一个动作 a’;
- 更新动作值函数:Q(s, a) = Q(s, a) + α * (r + γ * Q(s’, a’) - Q(s, a));
- 将状态更新为下一个状态:s = s’;
- 将动作更新为下一个动作:a = a’;
- 重复步骤3到8,直到达到终止状态。
通过不断与环境交互和更新动作值函数,SARSA算法能够逐步学习到最优策略,并在最优策略下获得最大的累积奖励。
示例代码
以下是一个简单的示例代码,演示了如何使用SARSA算法来解决一个简单的强化学习问题:
import numpy as np# 定义环境
num_states = 5
num_actions = 3
Q = np.zeros((num_states, num_actions)) # 动作值函数
rewards = np.array([[-1, 0, -1], # 状态0的奖励表[-1, -1, 0], # 状态1的奖励表[0, -1, -1], # 状态2的奖励表[-1, 0, -1], # 状态3的奖励表[-1, -1, 0]]) # 状态4的奖励表
gamma = 0.8 # 折扣因子
alpha = 0.1 # 学习率
epsilon = 0.1 # ε-greedy策略的ε值# 定义SARSA算法
def sarsa(num_episodes):for episode in range(num_episodes):state = 0 # 初始状态action = epsilon_greedy(state) # 初始动作while state != num_states - 1: # 直到达到终止状态next_state = action # 下一个状态为当前动作next_action = epsilon_greedy(next_state) # 下一个动作# 使用SARSA更新动作值函数Q[state, action] += alpha * (rewards[state, action] + gamma * Q[next_state, next_action] - Q[state, action])state = next_stateaction = next_action# ε-greedy策略
def epsilon_greedy(state):if np.random.uniform(0, 1) < epsilon:action = np.random.randint(num_actions) # 随机选择一个动作else:action = np.argmax(Q[state]) # 选择具有最大动作值的动作return action# 运行SARSA算法
sarsa(num_episodes=100)# 输出结果
print("最优动作值函数:")
print(Q)
这个示例代码是一个简单的强化学习问题,具有5个状态和3个动作。在每个状态下,根据rewards矩阵给出的即时奖励,智能体通过SARSA算法逐步更新动作值函数Q。最后,输出最优的动作值函数Q。
相关文章:
强化学习系列--时序差分学习方法(SARSA算法)
强化学习系列--时序差分学习方法(SARSA算法) 介绍示例代码 介绍 SARSA(State-Action-Reward-State-Action)是一种强化学习算法,用于解决马尔可夫决策过程(MDP)中的问题。SARSA算法属于基于值的…...
深度学习9:简单理解生成对抗网络原理
目录 生成算法 生成对抗网络(GAN) “生成”部分 “对抗性”部分 GAN如何运作? 培训GAN的技巧? GAN代码示例 如何改善GAN? 结论 生成算法 您可以将生成算法分组到三个桶中的一个: 鉴于标签&#…...
adb shell setprop 、开发者选项
App性能调试详解 Android App性能监控工具 更多系统属性参考 一、开启 GPU Render 的profiling bar: Gpu渲染速度 adb shell setprop debug.hwui.profile true adb shell setprop debug.hwui.profile visual_bars adb shell setprop debug.hwui.profile visual…...
性能测试面试问题,一周拿3个offer不嫌多
性能测试的三个核心原理是什么? 1.基于协议。性能测试的对象是网络分布式架构的软件,而网络分布式架构的核心是网络协议 2.多线程。人的大脑是单线程的,电脑的cpu是多线程的。性能测试就是利用多线程的技术模拟多用户去负载 3.模拟真实场景。…...
Android Bitmap压缩
Android View截屏长图拼接(RecyclerView) 我们在实际使用中,往往图片转化成Bitmap,对Bitmap操作的时候(如:截屏分享等),可能Bitmap会过大,导致无视实现对应功能。那么我们就需要对B…...
不同子网络中的通信过程
从输入www.baidu.com经历了什么 一、DNS(网址->IP) 二、ARP(IP->MAC) A->B:有数据发送,数据封装ip之后发现没有主机B的mac地址。然后ARP在本网段广播:检查目标地址和源地址是否在同一…...
Ubuntu Touch OTA-2 推出,支持 Fairphone 3 和 F(x)tec Pro1 X
导读UBports 基金会近日宣布为基于 Ubuntu 20.04 LTS (Focal Fossa) 的 Ubuntu Touch 移动操作系统发布并全面提供 OTA-2 软件更新。 Ubuntu Touch OTA-2 在首次 OTA 更新整整四个月后发布,支持新设备,包括 Fairphone 3、F(x)tec Pro1 X 和 Vollaphone X…...
【网络】数据链路层——MAC帧协议 | ARP协议
🐱作者:一只大喵咪1201 🐱专栏:《网络》 🔥格言:你只管努力,剩下的交给时间! 来到数据链路层后,完整的数据被叫做数据帧,习惯上称之为MAC帧。 MAC帧协议 | A…...
【Spring Boot】Spring Boot自动加载机制:简化应用程序的启动
在微服务盛行的今天,快速搭建和启动应用程序变得至关重要。Spring Boot作为Java生态系统中主流的框架,其自动加载机制使得开发者能够快速构建和启动应用程序。本文将详细介绍Spring Boot的自动加载机制,并通过代码示例加以说明。 首先&#…...
centos7搭建apache作为文件站后,其他人无法访问解决办法
在公司内网的一个虚拟机上搭建了httpsd服务,准备作为内部小伙伴们的文件站,但是搭建好之后发现别的小伙伴是无法访问我机器的。 于是寻找一下原因,排查步骤如下: 1.netstat -lnp 和 ps aux 先看下端口和 服务情况 发现均正常 2.…...
【开个空调】语音识别+红外发射
废话少说,直接上空调板子:YAPOF3。红外接收发射模块用的某宝上发现的YF-33(遗憾解码还没搞清楚,不然做个lirc.conf功能才多)。最后是语音识别用的幻尔的,某宝自然也有,它是个i2c的接口。 本篇胡说八道其实纯粹为了留个…...
【hibernate validator】(二)声明和验证Bean约束
首发博客地址 https://blog.zysicyj.top/ 一、声明bean约束 1. 字段级别约束 不支持静态类型字段 验证引擎直接访问实例变量,不会调用属性的访问器 在验证字节码增强的对象时,应适用属性级别约束,因为字节码增库无法通过反射确定字段访问 pac…...
Redis持久化机制之RDB,AOF与混合AOF
Redis是一款高性能的NoSQL数据库,它的速度非常快,同时也支持多种持久化机制,其中最常用的是RDB和AOF,还有一种混合AOF方式。那么这些持久化机制到底是什么,有什么不同呢? RDB是Redis默认的持久化方式&…...
为啥外卖小哥宁愿600一月租电动车,也不花2、3千买一辆送外卖!背后的原因......
大家好!我是菜哥! 又到周末了,我们聊点非技术的东西。最近知乎“为何那些穿梭于城市大街小巷的外卖小哥,宁愿每月掏出600块租一辆电动车,也不愿意掏出2、3千买一辆呢?” 冲上热榜! 听起来有点“…...
分布式定时任务框架Quartz总结和实践(2)—持久化到Mysql数据库
本文主要介绍分布式定时任务框架Quartz集成SpringBoot持久化数据到Mysql数据库的操作,上一篇文章使用Quartz创建定时任务都是保存在内存中,如果服务重启定时任务就会失效,所以Quartz官方也提供将定时任务等信息持久化到Mysql数据库的功能&…...
Linux 服务器搭建配置,开发效率一飞冲天 - Centos 篇
大家好,我是比特桃。最近白嫖了一台 Centos 云服务器,用来做日常开发,特此记录一下搭建配置的过程。 我之前有篇文章是基于 Ubuntu 的:Linux 服务器搭建配置,开发效率一飞冲天 - Ubuntu 篇 如同个人电脑一样࿰…...
Day46|leetcode 139.单词拆分
leetcode 139.单词拆分 题目链接:139. 单词拆分 - 力扣(LeetCode) 视频链接:动态规划之完全背包,你的背包如何装满?| LeetCode:139.单词拆分_哔哩哔哩_bilibili 题目概述 给你一个字符串 s 和一…...
深入理解高并发编程 - Thread 类的 stop () 和 interrupt ()
stop() stop() 方法被用于停止线程。然而,需要注意的是,stop() 方法已经被标记为已废弃(deprecated),并且不推荐使用。这是因为使用该方法可能导致不可预料的问题和数据不一致性,因此它被认为是不安全的。…...
C语言之三子棋游戏实现篇
目录 主函数test.c 菜单函数 选择实现 游戏函数 (函数调用) 打印棋盘数据 打印展示棋盘 玩家下棋 电脑下棋 判断输赢 循环 test.c总代码 头文件&函数声明game.h 头文件的包含 游戏符号声明 游戏函数声明 game.h总代码 游戏函数ga…...
jupyter notebook 插件nbextensions的安装
安装步骤: 1、打开 jupyter notebook,新建一个 python 文件; 2、 分别输入以下代码,然后运行,出现 warning 不影响使用,如果出现 errors,则说明下载有问题: !python -m pip install…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?
在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...
