当前位置: 首页 > news >正文

强化学习系列--时序差分学习方法(SARSA算法)

强化学习系列--时序差分学习方法(SARSA算法)

  • 介绍
    • 示例代码

介绍

SARSA(State-Action-Reward-State-Action)是一种强化学习算法,用于解决马尔可夫决策过程(MDP)中的问题。SARSA算法属于基于值的强化学习算法,用于学习最优策略。

在SARSA算法中,智能体通过与环境进行交互来学习。它基于当前状态、选择的动作、获得的奖励、下一个状态和下一个动作来更新价值函数(或者动作值函数),并根据更新后的价值函数选择下一个动作。

SARSA算法的更新规则如下:

Q(s, a) = Q(s, a) + α * (r(s,a,s’) + γ * Q(s’, a’) - Q(s, a))

其中,Q(s, a) 表示在状态 s 执行动作 a 的动作值函数,α 是学习率,r 是即时奖励,γ 是折扣因子,s’ 是下一个状态,a’ 是在下一个状态下选择的动作。

SARSA算法的核心思想是根据当前策略进行动作选择,并根据选择的动作和环境的反馈进行更新。它使用一种称为ε-greedy策略的方法,即以ε的概率选择一个随机动作,以1-ε的概率选择当前最优的动作。这样可以在探索和利用之间进行权衡,有助于智能体探索新的状态和动作,并最终学习到最优策略。

SARSA算法的步骤如下:

  1. 初始化动作值函数 Q(s, a) 为任意值;
  2. 选择初始状态 s;
  3. 根据当前策略选择动作 a;
  4. 执行动作 a,观察下一个状态 s’ 和即时奖励 r;
  5. 根据当前策略选择下一个动作 a’;
  6. 更新动作值函数:Q(s, a) = Q(s, a) + α * (r + γ * Q(s’, a’) - Q(s, a));
  7. 将状态更新为下一个状态:s = s’;
  8. 将动作更新为下一个动作:a = a’;
  9. 重复步骤3到8,直到达到终止状态。

通过不断与环境交互和更新动作值函数,SARSA算法能够逐步学习到最优策略,并在最优策略下获得最大的累积奖励。

示例代码

以下是一个简单的示例代码,演示了如何使用SARSA算法来解决一个简单的强化学习问题:

import numpy as np# 定义环境
num_states = 5
num_actions = 3
Q = np.zeros((num_states, num_actions))  # 动作值函数
rewards = np.array([[-1, 0, -1],  # 状态0的奖励表[-1, -1, 0],  # 状态1的奖励表[0, -1, -1],  # 状态2的奖励表[-1, 0, -1],  # 状态3的奖励表[-1, -1, 0]])  # 状态4的奖励表
gamma = 0.8  # 折扣因子
alpha = 0.1  # 学习率
epsilon = 0.1  # ε-greedy策略的ε值# 定义SARSA算法
def sarsa(num_episodes):for episode in range(num_episodes):state = 0  # 初始状态action = epsilon_greedy(state)  # 初始动作while state != num_states - 1:  # 直到达到终止状态next_state = action  # 下一个状态为当前动作next_action = epsilon_greedy(next_state)  # 下一个动作# 使用SARSA更新动作值函数Q[state, action] += alpha * (rewards[state, action] + gamma * Q[next_state, next_action] - Q[state, action])state = next_stateaction = next_action# ε-greedy策略
def epsilon_greedy(state):if np.random.uniform(0, 1) < epsilon:action = np.random.randint(num_actions)  # 随机选择一个动作else:action = np.argmax(Q[state])  # 选择具有最大动作值的动作return action# 运行SARSA算法
sarsa(num_episodes=100)# 输出结果
print("最优动作值函数:")
print(Q)

这个示例代码是一个简单的强化学习问题,具有5个状态和3个动作。在每个状态下,根据rewards矩阵给出的即时奖励,智能体通过SARSA算法逐步更新动作值函数Q。最后,输出最优的动作值函数Q。

相关文章:

强化学习系列--时序差分学习方法(SARSA算法)

强化学习系列--时序差分学习方法&#xff08;SARSA算法&#xff09; 介绍示例代码 介绍 SARSA&#xff08;State-Action-Reward-State-Action&#xff09;是一种强化学习算法&#xff0c;用于解决马尔可夫决策过程&#xff08;MDP&#xff09;中的问题。SARSA算法属于基于值的…...

深度学习9:简单理解生成对抗网络原理

目录 生成算法 生成对抗网络&#xff08;GAN&#xff09; “生成”部分 “对抗性”部分 GAN如何运作&#xff1f; 培训GAN的技巧&#xff1f; GAN代码示例 如何改善GAN&#xff1f; 结论 生成算法 您可以将生成算法分组到三个桶中的一个&#xff1a; 鉴于标签&#…...

adb shell setprop 、开发者选项

App性能调试详解 Android App性能监控工具 更多系统属性参考 一、开启 GPU Render 的profiling bar&#xff1a; Gpu渲染速度 adb shell setprop debug.hwui.profile true adb shell setprop debug.hwui.profile visual_bars adb shell setprop debug.hwui.profile visual…...

性能测试面试问题,一周拿3个offer不嫌多

性能测试的三个核心原理是什么&#xff1f; 1.基于协议。性能测试的对象是网络分布式架构的软件&#xff0c;而网络分布式架构的核心是网络协议 2.多线程。人的大脑是单线程的&#xff0c;电脑的cpu是多线程的。性能测试就是利用多线程的技术模拟多用户去负载 3.模拟真实场景。…...

Android Bitmap压缩

Android View截屏长图拼接&#xff08;RecyclerView&#xff09; 我们在实际使用中&#xff0c;往往图片转化成Bitmap&#xff0c;对Bitmap操作的时候&#xff08;如:截屏分享等&#xff09;&#xff0c;可能Bitmap会过大&#xff0c;导致无视实现对应功能。那么我们就需要对B…...

不同子网络中的通信过程

从输入www.baidu.com经历了什么 一、DNS&#xff08;网址->IP&#xff09; 二、ARP&#xff08;IP->MAC&#xff09; A->B&#xff1a;有数据发送&#xff0c;数据封装ip之后发现没有主机B的mac地址。然后ARP在本网段广播&#xff1a;检查目标地址和源地址是否在同一…...

Ubuntu Touch OTA-2 推出,支持 Fairphone 3 和 F(x)tec Pro1 X

导读UBports 基金会近日宣布为基于 Ubuntu 20.04 LTS (Focal Fossa) 的 Ubuntu Touch 移动操作系统发布并全面提供 OTA-2 软件更新。 Ubuntu Touch OTA-2 在首次 OTA 更新整整四个月后发布&#xff0c;支持新设备&#xff0c;包括 Fairphone 3、F(x)tec Pro1 X 和 Vollaphone X…...

【网络】数据链路层——MAC帧协议 | ARP协议

&#x1f431;作者&#xff1a;一只大喵咪1201 &#x1f431;专栏&#xff1a;《网络》 &#x1f525;格言&#xff1a;你只管努力&#xff0c;剩下的交给时间&#xff01; 来到数据链路层后&#xff0c;完整的数据被叫做数据帧&#xff0c;习惯上称之为MAC帧。 MAC帧协议 | A…...

【Spring Boot】Spring Boot自动加载机制:简化应用程序的启动

在微服务盛行的今天&#xff0c;快速搭建和启动应用程序变得至关重要。Spring Boot作为Java生态系统中主流的框架&#xff0c;其自动加载机制使得开发者能够快速构建和启动应用程序。本文将详细介绍Spring Boot的自动加载机制&#xff0c;并通过代码示例加以说明。 首先&#…...

centos7搭建apache作为文件站后,其他人无法访问解决办法

在公司内网的一个虚拟机上搭建了httpsd服务&#xff0c;准备作为内部小伙伴们的文件站&#xff0c;但是搭建好之后发现别的小伙伴是无法访问我机器的。 于是寻找一下原因&#xff0c;排查步骤如下&#xff1a; 1.netstat -lnp 和 ps aux 先看下端口和 服务情况 发现均正常 2.…...

【开个空调】语音识别+红外发射

废话少说&#xff0c;直接上空调板子&#xff1a;YAPOF3。红外接收发射模块用的某宝上发现的YF-33(遗憾解码还没搞清楚&#xff0c;不然做个lirc.conf功能才多)。最后是语音识别用的幻尔的&#xff0c;某宝自然也有&#xff0c;它是个i2c的接口。 本篇胡说八道其实纯粹为了留个…...

【hibernate validator】(二)声明和验证Bean约束

首发博客地址 https://blog.zysicyj.top/ 一、声明bean约束 1. 字段级别约束 不支持静态类型字段 验证引擎直接访问实例变量&#xff0c;不会调用属性的访问器 在验证字节码增强的对象时&#xff0c;应适用属性级别约束&#xff0c;因为字节码增库无法通过反射确定字段访问 pac…...

Redis持久化机制之RDB,AOF与混合AOF

Redis是一款高性能的NoSQL数据库&#xff0c;它的速度非常快&#xff0c;同时也支持多种持久化机制&#xff0c;其中最常用的是RDB和AOF&#xff0c;还有一种混合AOF方式。那么这些持久化机制到底是什么&#xff0c;有什么不同呢&#xff1f; RDB是Redis默认的持久化方式&…...

为啥外卖小哥宁愿600一月租电动车,也不花2、3千买一辆送外卖!背后的原因......

大家好&#xff01;我是菜哥&#xff01; 又到周末了&#xff0c;我们聊点非技术的东西。最近知乎“为何那些穿梭于城市大街小巷的外卖小哥&#xff0c;宁愿每月掏出600块租一辆电动车&#xff0c;也不愿意掏出2、3千买一辆呢&#xff1f;” 冲上热榜&#xff01; 听起来有点“…...

分布式定时任务框架Quartz总结和实践(2)—持久化到Mysql数据库

本文主要介绍分布式定时任务框架Quartz集成SpringBoot持久化数据到Mysql数据库的操作&#xff0c;上一篇文章使用Quartz创建定时任务都是保存在内存中&#xff0c;如果服务重启定时任务就会失效&#xff0c;所以Quartz官方也提供将定时任务等信息持久化到Mysql数据库的功能&…...

Linux 服务器搭建配置,开发效率一飞冲天 - Centos 篇

大家好&#xff0c;我是比特桃。最近白嫖了一台 Centos 云服务器&#xff0c;用来做日常开发&#xff0c;特此记录一下搭建配置的过程。 我之前有篇文章是基于 Ubuntu 的&#xff1a;Linux 服务器搭建配置&#xff0c;开发效率一飞冲天 - Ubuntu 篇 如同个人电脑一样&#xff0…...

Day46|leetcode 139.单词拆分

leetcode 139.单词拆分 题目链接&#xff1a;139. 单词拆分 - 力扣&#xff08;LeetCode&#xff09; 视频链接&#xff1a;动态规划之完全背包&#xff0c;你的背包如何装满&#xff1f;| LeetCode&#xff1a;139.单词拆分_哔哩哔哩_bilibili 题目概述 给你一个字符串 s 和一…...

深入理解高并发编程 - Thread 类的 stop () 和 interrupt ()

stop() stop() 方法被用于停止线程。然而&#xff0c;需要注意的是&#xff0c;stop() 方法已经被标记为已废弃&#xff08;deprecated&#xff09;&#xff0c;并且不推荐使用。这是因为使用该方法可能导致不可预料的问题和数据不一致性&#xff0c;因此它被认为是不安全的。…...

C语言之三子棋游戏实现篇

目录 主函数test.c 菜单函数 选择实现 游戏函数 &#xff08;函数调用&#xff09; 打印棋盘数据 打印展示棋盘 玩家下棋 电脑下棋 判断输赢 循环 test.c总代码 头文件&函数声明game.h 头文件的包含 游戏符号声明 游戏函数声明 game.h总代码 游戏函数ga…...

jupyter notebook 插件nbextensions的安装

安装步骤&#xff1a; 1、打开 jupyter notebook&#xff0c;新建一个 python 文件&#xff1b; 2、 分别输入以下代码&#xff0c;然后运行&#xff0c;出现 warning 不影响使用&#xff0c;如果出现 errors&#xff0c;则说明下载有问题&#xff1a; !python -m pip install…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素&#xff0c;返回一个新的数组。 特点&#xff1a; 不修改原数组&#xff1a;slice 不会改变原数组&#xff0c;而是返回一个新的数组。提取数组的部分&#xff1a;slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...

LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用

中达瑞和自2005年成立以来&#xff0c;一直在光谱成像领域深度钻研和发展&#xff0c;始终致力于研发高性能、高可靠性的光谱成像相机&#xff0c;为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...

【堆垛策略】设计方法

堆垛策略的设计是积木堆叠系统的核心&#xff0c;直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法&#xff0c;涵盖基础规则、优化算法和容错机制&#xff1a; 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则&#xff1a; 大尺寸/重量积木在下&#xf…...

6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙

Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...

热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁

赛门铁克威胁猎手团队最新报告披露&#xff0c;数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据&#xff0c;严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能&#xff0c;但SEMR…...