当前位置: 首页 > news >正文

加油站ai视觉分析检测预警

加油站ai视觉分析预警系统通过yolov8图像识别和行为分析,加油站ai视觉分析预警算法识别出打电话抽烟、烟火行为、静电释放时间是否合规、灭火器摆放以及人员工服等不符合规定的行为,并发出预警信号以提醒相关人员。YOLOv8 的推理过程和 YOLOv5 几乎一样,唯一差别在于前面需要对 Distribution Focal Loss 中的积分表示 bbox 形式进行解码,变成常规的 4 维度 bbox,后续计算过程就和 YOLOv5 一样了。YOLOv8 的训练策略和 YOLOv5 没有啥区别,最大区别就是模型的训练总 epoch 数从 300 提升到了 500,这也导致训练时间急剧增加。

在介绍Yolo算法之前,首先先介绍一下滑动窗口技术,这对我们理解Yolo算法是有帮助的。采用滑动窗口的目标检测算法思路非常简单,它将检测问题转化为了图像分类问题。其基本原理就是采用不同大小和比例(宽高比)的窗口在整张图片上以一定的步长进行滑动,然后对这些窗口对应的区域做图像分类,这样就可以实现对整张图片的检测了,如下图3所示,如DPM就是采用这种思路。但是这个方法有致命的缺点,就是你并不知道要检测的目标大小是什么规模,所以你要设置不同大小和比例的窗口去滑动,而且还要选取合适的步长。但是这样会产生很多的子区域,并且都要经过分类器去做预测,这需要很大的计算量,所以你的分类器不能太复杂,因为要保证速度。解决思路之一就是减少要分类的子区域,这就是R-CNN的一个改进策略,其采用了selective search方法来找到最有可能包含目标的子区域(Region Proposal),其实可以看成采用启发式方法过滤掉很多子区域,这会提升效率。

YOLOv8分割模型使用-seg后缀,即yolov8n- seg .pt,并在COCO上进行预训练。在COCO128-seg数据集上训练YOLOv8n-seg 100个epoch,图像大小为640。在COCO128-seg数据集上验证训练过的YOLOv8n-seg模型的准确性。不需要传递参数,因为模型保留了它的训练数据和参数作为模型属性。图像分类器的输出是一个单一的类标签和一个置信度分数。当您只需要知道图像属于什么类,而不需要知道该类对象的位置或它们的确切形状时,图像分类是有用的。YOLOv8分类模型使用-cls后缀,即yolov8n-cls.pt,并在ImageNet上进行预训练。其他的使用方法和检测与分割类似,不再赘述。


 

Adapter接口定义了如下方法:

public abstract void registerDataSetObserver (DataSetObserver observer)

Adapter表示一个数据源,这个数据源是有可能发生变化的,比如增加了数据、删除了数据、修改了数据,当数据发生变化的时候,它要通知相应的AdapterView做出相应的改变。为了实现这个功能,Adapter使用了观察者模式,Adapter本身相当于被观察的对象,AdapterView相当于观察者,通过调用registerDataSetObserver方法,给Adapter注册观察者。

public abstract void unregisterDataSetObserver (DataSetObserver observer)

通过调用unregisterDataSetObserver方法,反注册观察者。

public abstract int getCount () 返回Adapter中数据的数量。

public abstract Object getItem (int position)

Adapter中的数据类似于数组,里面每一项就是对应一条数据,每条数据都有一个索引位置,即position,根据position可以获取Adapter中对应的数据项。

public abstract long getItemId (int position)

获取指定position数据项的id,通常情况下会将position作为id。在Adapter中,相对来说,position使用比id使用频率更高。

public abstract boolean hasStableIds ()

hasStableIds表示当数据源发生了变化的时候,原有数据项的id会不会发生变化,如果返回true表示Id不变,返回false表示可能会变化。Android所提供的Adapter的子类(包括直接子类和间接子类)的hasStableIds方法都返回false。

public abstract View getView (int position, View convertView, ViewGroup parent)

getView是Adapter中一个很重要的方法,该方法会根据数据项的索引为AdapterView创建对应的UI项。

相关文章:

加油站ai视觉分析检测预警

加油站ai视觉分析预警系统通过yolov8图像识别和行为分析,加油站ai视觉分析预警算法识别出打电话抽烟、烟火行为、静电释放时间是否合规、灭火器摆放以及人员工服等不符合规定的行为,并发出预警信号以提醒相关人员。YOLOv8 的推理过程和 YOLOv5 几乎一样&…...

Docker构建镜像

Docker根据Dockerfile文件构建镜像 在实际生产中,常常使用Dockerfile构建企业级生产环境镜像,然后再部署在我们的生产环境中,本文将从从零开始介绍Dockerfile如何使用,构建镜像。 Dockerhub官网地址:https://registry.hub.docke…...

【太多网工对NAT还存在这4种误解!你是其中一个吗?】

NAT是解决公网地址不够用大家最熟悉的网络技术之一,而NAT最依赖的是NAT translation表项,至于NAT的概念和背景这里不再解释,网络上有很多关于此的类似介绍,自己搜索即可。下面主要是针对大家对NAT的一些误解进行分析。 1 误解一…...

React钩子函数之useEffect,useLayoutEffect与useInsertionEffect的区别

React钩子函数在React开发中扮演着非常重要的角色。其中,useEffect、useLayoutEffect和useInsertionEffect是三个常用的钩子函数,它们的作用虽然有些相似,但是也存在一些区别。在本文中,我们将详细介绍这三个钩子函数的区别&#…...

Unity——后期处理举例

Post Processing(后期处理)并不属于特效,但现代的特效表现离不开后期处理的支持。本文以眩光(Bloom)为例,展示一种明亮的激光的制作方法 1、安装后期处理扩展包 较新的Unity版本已经内置了新版的后期处理扩…...

PMP P-05 Quality Management

质量管理...

vue中css修改滚动条样式

vue中css修改滚动条样式 效果图: 代码(在app.vue中全局增加下面样式即可): &::-webkit-scrollbar {width: 8px;height: 8px;border-radius: 3px;}/*定义滚动条轨道 内阴影圆角*/&::-webkit-scrollbar-track {//-webkit-box-shadow: inset 0 0 …...

uniapp的H5实现图片长按保存

实现图片预览 使用uniapp的api实现图片预览,可以缩放,关闭等操作 uni.previewImage({urls:[imageUrl],success:()>{this.controllTouch();} }) imageUrl是图片地址,如https://www.111.com/abc/image.png urls是字符串数组,…...

Java 8:Stream API 流式操作(学习)

Java 8:Stream API Java 8 中的 Stream API 是一组用于对集合数据进行处理的新特性;提供一种以声明式风格对集合进行操作的方式,简化集合的处理,使得代码更加简洁、优雅,并且能够更高效地处理数据; 这种风格…...

04_20 直接使用代码 创建内核模块获取物理内存信息

好像和 free得出来有关 和/proc/meminfo 有关 但是下面是全部的物理页 #include <linux/version.h> #include <linux/module.h> #include <linux/init.h> #include <linux/mm.h>//下面宏表示物理内存空间起始地址 对应页帧号 #define ARCH_PFN_OFFSET…...

<C++> STL_list

1.list的介绍 list是可以在常数范围内在任意位置进行插入和删除的序列式容器&#xff0c;并且该容器可以前后双向迭代。list的底层是双向链表结构&#xff0c;双向链表中每个元素存储在互不相关的独立节点中&#xff0c;在节点中通过指针指向 其前一个元素和后一个元素。list与…...

聚类分析 | MATLAB实现基于FCM模糊C均值聚类结果可视化

聚类分析 | MATLAB实现基于FCM模糊C均值聚类结果可视化 目录 聚类分析 | MATLAB实现基于FCM模糊C均值聚类结果可视化效果一览基本介绍程序设计参考资料 效果一览 基本介绍 FCM模糊C均值聚类&#xff0c;聚类结果可视化&#xff0c;MATLAB程序。 FCM&#xff08;Fuzzy C-Means&a…...

C++笔记之设计模式:setter函数、依赖注入

C笔记之设计模式&#xff1a;setter函数、依赖注入 参考笔记&#xff1a; 1.C笔记之静态成员函数可以在类外部访问私有构造函数吗&#xff1f; 2.C笔记之设计模式&#xff1a;setter函数、依赖注入 3.C笔记之两个类的实例之间传递参数——通过构造函数传递类对象的方法详细探究…...

Spring MVC详解

文章目录 一、SpringMVC1.1 引言1.2 MVC架构1.2.1 概念1.2.2 好处 二、开发流程2.1 导入依赖2.2 配置核心(前端)控制器2.3 后端控制器2.4 配置文件2.5 访问 三、接收请求参数3.1 基本类型参数3.2 实体收参【重点】3.3 数组收参3.4 集合收参 【了解】3.5 路径参数3.6 中文乱码 四…...

谷歌公开.zip域名,应采取哪些措施应对可能的安全风险?

近期&#xff0c;谷歌发布了几个新的顶级域名&#xff0c;这些新域名包括.dad、.esq、.prof、.phd、.nexus、.foo、.mov以及本文我们将要提到的.zip域名。自发布以来&#xff0c;多个安全社区都开始讨论这些顶级域名所带来的影响&#xff0c;主要原因是.zip很容易被误认为是文件…...

css3滤镜属性filter让网页变黑白

今天是特殊的日子&#xff0c;抗击疫情全国哀悼日&#xff0c;向英雄们致敬&#xff0c;一路走好&#xff01;应该发现了今天很多网站页面都是黑白色的&#xff0c;我的博客今天都是黑白色&#xff0c;用css3滤镜属性filter让网页马上变黑白&#xff0c;一行代码就搞定。 在你…...

C++教程 - How to C++系列专栏第5篇

关于专栏 这个专栏是优质的C教程专栏&#xff0c;如果你还没看过第0篇&#xff0c;点击这里去第0篇 本专栏一致使用操作系统&#xff1a;macOS Ventura&#xff0c;代码编辑器&#xff1a;CLion&#xff0c;C编译器&#xff1a;Clang 感谢一路相伴的朋友们&#xff0c;感谢你…...

Vue2向Vue3过度核心技术插槽

目录 1 插槽-默认插槽1.作用2.需求3.问题4.插槽的基本语法5.代码示例6.总结 2 插槽-后备内容&#xff08;默认值&#xff09;1.问题2.插槽的后备内容3.语法4.效果5.代码示例 3 插槽-具名插槽1.需求2.具名插槽语法3.v-slot的简写4.总结 4 作用域插槽1.插槽分类2.作用3.场景4.使用…...

vite配置electron、ElementPlus或者AntDesignVue

这是全部的配置原文&#xff1a; import { defineConfig } from vite; import vue from vitejs/plugin-vue; import electron from "vite-plugin-electron"; import electronRenderer from "vite-plugin-electron-renderer"; import polyfillExports from…...

时序分解 | MATLAB实现基于SVD奇异值分解的信号分解分量可视化

时序分解 | MATLAB实现基于SVD奇异值分解的信号分解分量可视化 目录 时序分解 | MATLAB实现基于SVD奇异值分解的信号分解分量可视化效果一览基本介绍程序设计参考资料 效果一览 基本介绍 SVD分解重构算法&#xff0c;MATLAB程序&#xff0c;奇异值分解 (Singular Value Decompo…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?

Pod IP 的本质与特性 Pod IP 的定位 纯端点地址&#xff1a;Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址&#xff08;如 10.244.1.2&#xff09;无特殊名称&#xff1a;在 Kubernetes 中&#xff0c;它通常被称为 “Pod IP” 或 “容器 IP”生命周期&#xff1a;与 Pod …...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板&#xff08;STM32F103RBT6&#xff09;通过I2C驱动ICM20948九轴传感器&#xff0c;实现姿态解算&#xff0c;并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化&#xff0c;适合嵌入式及物联网开发者。在基础驱动上新增…...

LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用

中达瑞和自2005年成立以来&#xff0c;一直在光谱成像领域深度钻研和发展&#xff0c;始终致力于研发高性能、高可靠性的光谱成像相机&#xff0c;为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...

消息队列系统设计与实践全解析

文章目录 &#x1f680; 消息队列系统设计与实践全解析&#x1f50d; 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡&#x1f4a1; 权衡决策框架 1.3 运维复杂度评估&#x1f527; 运维成本降低策略 &#x1f3d7;️ 二、典型架构设计2.1 分布式事务最终一致…...