2023年国赛数学建模思路 - 案例:粒子群算法
文章目录
- 1 什么是粒子群算法?
- 2 举个例子
- 3 还是一个例子
- 算法流程
- 算法实现
- 建模资料
# 0 赛题思路
(赛题出来以后第一时间在CSDN分享)
https://blog.csdn.net/dc_sinor?type=blog
1 什么是粒子群算法?
粒子群算法(Particle Swarm Optimization,PSO)是一种模仿鸟群、鱼群觅食行为发展起来的一种进化算法。其概念简单易于编程实现且运行效率高、参数相对较少,应用非常广泛。粒子群算法于1995年提出,距今(2019)已有24年历史。
粒子群算法中每一个粒子的位置代表了待求问题的一个候选解。每一个粒子的位置在空间内的好坏由该粒子的位置在待求问题中的适应度值决定。每一个粒子在下一代的位置有其在这一代的位置与其自身的速度矢量决定,其速度决定了粒子每次飞行的方向和距离。在飞行过程中,粒子会记录下自己所到过的最优位置 P,群体也会更新群体所到过的最优位置G 。粒子的飞行速度则由其当前位置、粒子自身所到过的最优位置、群体所到过的最优位置以及粒子此时的速度共同决定。
2 举个例子
在一个湖中有两个人他们之间可以通信,并且可以探测到自己所在位置的最低点。初始位置如上图所示,由于右边比较深,因此左边的人会往右边移动一下小船。
现在左边比较深,因此右边的人会往左边移动一下小船
一直重复该过程,最后两个小船会相遇
得到一个局部的最优解
将每个个体表示为粒子。每个个体在某一时刻的位置表示为,x(t),方向表示为v(t)
p(t)为在t时刻x个体的自己的最优解,g(t)为在t时刻所有个体的最优解,v(t)为个体在t时刻的方向,x(t)为个体在t时刻的位置
下一个位置为上图所示由x,p,g共同决定了
种群中的粒子通过不断地向自身和种群的历史信息进行学习,从而可以找到问题的最优解。
3 还是一个例子
粒子群算法是根据鸟群觅食行为衍生出的算法。现在,我们的主角换成是一群鸟。
小鸟们的目标很简单,要在这一带找到食物最充足的位置安家、休养生息。它们在这个地方的搜索策略如下:
1. 每只鸟随机找一个地方,评估这个地方的食物量。
2. 所有的鸟一起开会,选出食物量最多的地方作为安家的候选点G。
3. 每只鸟回顾自己的旅程,记住自己曾经去过的食物量最多的地方P。
4. 每只鸟为了找到食物量更多的地方,于是向着G飞行,但是呢,不知是出于选择困难症还是对P的留恋,或者是对G的不信任,小鸟向G飞行时,时不时也向P飞行,其实它自己也不知道到底是向G飞行的多还是向P飞行的多。
5. 又到了开会的时间,如果小鸟们决定停止寻找,那么它们会选择当前的G来安家;否则继续2->3->4->5来寻找它们的栖息地。
上图描述的策略4的情况,一只鸟在点A处,点G是鸟群们找到过的食物最多的位置,点P是它自己去过的食物最多的地点。V是它现在的飞行速度(速度是矢量,有方向和大小),现在它决定向着P和G飞行,但是这是一只佛系鸟,具体飞多少随缘。如果没有速度V,它应该飞到B点,有了速度V的影响,它的合速度最终使它飞到了点C,这里是它的下一个目的地。如果C比P好那么C就成了下一次的P,如果C比G好,那么就成了下一次的G。
算法流程
算法实现
这里学长用python来给大家演示使用粒子群解函数最优解
import numpy as np
import matplotlib.pyplot as plt
import random# 定义“粒子”类
class parti(object):def __init__(self, v, x):self.v = v # 粒子当前速度self.x = x # 粒子当前位置self.pbest = x # 粒子历史最优位置class PSO(object):def __init__(self, interval, tab='min', partisNum=10, iterMax=1000, w=1, c1=2, c2=2):self.interval = interval # 给定状态空间 - 即待求解空间self.tab = tab.strip() # 求解最大值还是最小值的标签: 'min' - 最小值;'max' - 最大值self.iterMax = iterMax # 迭代求解次数self.w = w # 惯性因子self.c1, self.c2 = c1, c2 # 学习因子self.v_max = (interval[1] - interval[0]) * 0.1 # 设置最大迁移速度#####################################################################self.partis_list, self.gbest = self.initPartis(partisNum) # 完成粒子群的初始化,并提取群体历史最优位置self.x_seeds = np.array(list(parti_.x for parti_ in self.partis_list)) # 提取粒子群的种子状态 ###self.solve() # 完成主体的求解过程self.display() # 数据可视化展示def initPartis(self, partisNum):partis_list = list()for i in range(partisNum):v_seed = random.uniform(-self.v_max, self.v_max)x_seed = random.uniform(*self.interval)partis_list.append(parti(v_seed, x_seed))temp = 'find_' + self.tabif hasattr(self, temp): # 采用反射方法提取对应的函数gbest = getattr(self, temp)(partis_list)else:exit('>>>tab标签传参有误:"min"|"max"<<<')return partis_list, gbestdef solve(self):for i in range(self.iterMax):for parti_c in self.partis_list:f1 = self.func(parti_c.x)# 更新粒子速度,并限制在最大迁移速度之内parti_c.v = self.w * parti_c.v + self.c1 * random.random() * (parti_c.pbest - parti_c.x) + self.c2 * random.random() * (self.gbest - parti_c.x)if parti_c.v > self.v_max: parti_c.v = self.v_maxelif parti_c.v < -self.v_max: parti_c.v = -self.v_max# 更新粒子位置,并限制在待解空间之内if self.interval[0] <= parti_c.x + parti_c.v <=self.interval[1]:parti_c.x = parti_c.x + parti_c.velse:parti_c.x = parti_c.x - parti_c.vf2 = self.func(parti_c.x)getattr(self, 'deal_'+self.tab)(f1, f2, parti_c) # 更新粒子历史最优位置与群体历史最优位置def func(self, x): # 状态产生函数 - 即待求解函数value = np.sin(x**2) * (x**2 - 5*x)return valuedef find_min(self, partis_list): # 按状态函数最小值找到粒子群初始化的历史最优位置parti = min(partis_list, key=lambda parti: self.func(parti.pbest))return parti.pbestdef find_max(self, partis_list):parti = max(partis_list, key=lambda parti: self.func(parti.pbest)) # 按状态函数最大值找到粒子群初始化的历史最优位置return parti.pbestdef deal_min(self, f1, f2, parti_):if f2 < f1: # 更新粒子历史最优位置parti_.pbest = parti_.xif f2 < self.func(self.gbest):self.gbest = parti_.x # 更新群体历史最优位置def deal_max(self, f1, f2, parti_):if f2 > f1: # 更新粒子历史最优位置parti_.pbest = parti_.xif f2 > self.func(self.gbest):self.gbest = parti_.x # 更新群体历史最优位置def display(self):print('solution: {}'.format(self.gbest))plt.figure(figsize=(8, 4))x = np.linspace(self.interval[0], self.interval[1], 300)y = self.func(x)plt.plot(x, y, 'g-', label='function')plt.plot(self.x_seeds, self.func(self.x_seeds), 'b.', label='seeds')plt.plot(self.gbest, self.func(self.gbest), 'r*', label='solution')plt.xlabel('x')plt.ylabel('f(x)')plt.title('solution = {}'.format(self.gbest))plt.legend()plt.savefig('PSO.png', dpi=500)plt.show()plt.close()if __name__ == '__main__':PSO([-9, 5], 'max')
效果
建模资料
资料分享: 最强建模资料
相关文章:

2023年国赛数学建模思路 - 案例:粒子群算法
文章目录 1 什么是粒子群算法?2 举个例子3 还是一个例子算法流程算法实现建模资料 # 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 什么是粒子群算法? 粒子群算法(Pa…...

【1++的数据结构】之map与set(一)
👍作者主页:进击的1 🤩 专栏链接:【1的数据结构】 文章目录 一,关联式容器与键值对二,setset的使用 三,mapmap的使用 四,multiset与multimap 一,关联式容器与键值对 像l…...

Ubuntu断电重启后黑屏左上角光标闪烁,分辨率低解决办法,ubuntu系统display只有4:3 怎么办?太卡
这个问题主要是显卡驱动问题,按照步骤更新显卡驱动 1,选择metapackage 并且选择proprietary版本,选择版本号选择最新的版本。 2,具体步骤参考 前言 笔者在安装显卡驱动时并未遇到问题,主要是后续屏幕亮度无法调节&…...
Java 微服务当中POST form 、url、json的区别
在Java微服务的Controller中,你可以处理来自客户端的不同类型的POST请求,包括POST form、POST URL参数和POST JSON数据。以下是它们的区别以及在微服务Controller中的示例说明: POST Form 表单数据: 当客户端以表单方式提交数据…...
repo 常用命令汇总——202308
文章目录 1. 下载repo:2. 获取工程repo信息3. 下载代码4. 创建并切换本地分支5. repo forall6. repo upload7. repo list8. repo info9. repo help 1. 下载repo: 使用下面命令,具体版本号参考前面网页中显示的最新版本号。 curl http://git…...

[Linux]命令行参数和进程优先级
[Linux]命令行参数和进程优先级 文章目录 [Linux]命令行参数和进程优先级命令行参数命令行参数的概念命令函参数的接收编写代码验证 进程优先级进程优先级的概念PRI and NI使用top指令修改nice值 命令行参数 命令行参数的概念 命令行参数是指用于运行程序时在命令行输入的参数…...

Android13新特性之通知权限提升
Android13新特性之通知权限提升 随着移动通信的高速发展,保障通信的安全性变得尤为重要。在Android 13的最新版本中,通知权限的管理得到了进一步加强。为了实现安全的通信和确保用户的隐私,必须正确申请通知权限。本文将详细探讨如何在Andro…...

206. 反转链表 (简单系列)
给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。 示例 1: 输入:head [1,2,3,4,5] 输出:[5,4,3,2,1] 示例 2: 输入:head [1,2] 输出:[2,1] 示例 3: 输…...

攻防世界-Fakebook
原题 解题思路 点击join就可以进行注册 username看起来是个超链,点击跳转 在url里出现了no1,看起来可以注入,改成no1 and 12报错。本来想用sqlmap,可能是网速有问题,啥都没出来。no1order by 5报错,一共有…...

0基础入门C++之类和对象下篇
目录 1.再谈构造函数1.1构造函数赋值1.2初始化列表1.3explicit关键字 2.static成员2.1概念2.1静态成员变量2.2静态成员函数2.3特性 3.匿名对象4.友元函数4.1友元函数4.2友元类 5.内部类6.再次理解类和对象 1.再谈构造函数 首先我们先来回忆一下构造函数: 构造函数是…...
ECMAScript 2023
从尾到头搜索数组 在 JavaScript 中,通过 find() 和 findIndex() 查找数组中的值是一种常见做法。不过,这些方法从数组的开始进行遍历: const array [{v: 1}, {v: 2}, {v: 3}, {v: 4}, {v: 5}];array.find(elem > elem.v > 3); // {v:…...

爬虫实战之使用 Python 的 Scrapy 库开发网络爬虫详解
关键词 - Python, Scrapy, 网络爬虫 在信息爆炸时代,我们每天都要面对海量的数据和信息。有时候我们需要从互联网上获取特定的数据来进行分析和应用。今天我将向大家介绍如何使用 Python 的 Scrapy 库进行网络爬虫,获取所需数据。 1. Scrapy 简介 1.1 …...

【面试题】UDP和TCP有啥区别?
UDP UDP协议全称是用户数据报协议,在网络中它与TCP协议一样用于处理数据包,是一种无连接的协议。在OSI模型中,在第四层——传输层,处于IP协议的上一层。UDP有不提供数据包分组、组装和不能对数据包进行排序的缺点,也就…...
字节实习后端面试总结(C++/GO)
语言 C ++, Python 哪一个更快? 答:这个我不知道从哪方面说,就是 C + + 的话,它其实能够提供开发者非常多的权限,就是说它能涉及到一些操作系统级别的一些操作,速度应该挺快。然后 Python 实现功能还是蛮快的。 补充: 一般而言,C++更快一些,因为它是一种编译型语…...
linux 自动登录SSH
自动登录SSH 每次ssh连接服务器还要输入密码,可以进行配置自动登录SSH 步骤 在SSH的client端产生一组公钥和私钥 # 算法可以使用RSA和DSA两种ssh-keygen -f 秘钥文件名 -t 使用的算法 会生成私钥文件id_rsa以及公钥文件id_rsa.pub 把公钥上传至SSH Server端的.ssh目…...

量化:pandas基础
文章目录 简介Series构造 DataFrame构造列的查改增删填充默认值 简介 pandas是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构。 pandas主要的两种数据结构为Series和DataFrame,分别用于处理一维和二维数据。 Series Series 是一种类…...

华为云渲染实践
// 编者按:云计算与网络基础设施发展为云端渲染提供了更好的发展机会,华为云随之长期在自研图形渲染引擎、工业领域渲染和AI加速渲染三大方向进行云渲染方面的探索与研究。本次LiveVideoStackCon 2023上海站邀请了来自华为云的陈普,为大家分…...
SpringBoot注解详解:从核心到Web,从数据到测试,一网打尽
总结的了平时学习springboot常用的一些注解,方便以后开发时可以阅览回忆 springboot的常用注解可以分为以下几类: 核心注解:这些注解是springboot的基础,用于启动、配置和管理springboot应用。Web MVC注解:这些注解是…...
Java寻找奇数
1.题目描述 现在有一个长度为 n 的正整数序列,其中只有一种数值出现了奇数次,其他数值均出现偶数次,请你找出那个出现奇数次的数值。 输入描述: 第一行:一个整数n,表示序列的长度。第二行:n个…...

WinPlan经营大脑:精准预测,科学决策,助力企业赢得未来
近年,随着国内掀起数字化浪潮,“企业数字化转型”成为大势所趋下的必选项。但数据显示,大约79%的中小企业还处于数字化转型初期,在“企业经营管理”上存在着巨大的挑战和风险。 WinPlan经营大脑针对市场现存的企业经营管理难题,提供一站式解决方案,助力企业经营管理转型…...

Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...

rknn toolkit2搭建和推理
安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 ,不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源(最常用) conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...

Java后端检查空条件查询
通过抛出运行异常:throw new RuntimeException("请输入查询条件!");BranchWarehouseServiceImpl.java // 查询试剂交易(入库/出库)记录Overridepublic List<BranchWarehouseTransactions> queryForReagent(Branch…...

【Vue】scoped+组件通信+props校验
【scoped作用及原理】 【作用】 默认写在组件中style的样式会全局生效, 因此很容易造成多个组件之间的样式冲突问题 故而可以给组件加上scoped 属性, 令样式只作用于当前组件的标签 作用:防止不同vue组件样式污染 【原理】 给组件加上scoped 属性后…...