当前位置: 首页 > news >正文

2023年高教社杯 国赛数学建模思路 - 复盘:人力资源安排的最优化模型

文章目录

  • 0 赛题思路
    • 1 描述
    • 2 问题概括
    • 3 建模过程
      • 3.1 边界说明
      • 3.2 符号约定
      • 3.3 分析
      • 3.4 模型建立
      • 3.5 模型求解
    • 4 模型评价与推广
    • 5 实现代码
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 描述

某大学数学系人力资源安排问题是一个整数规划的最优化问题,通过具体分析数学系现有的技术力量和各方面的约束条件,在问题一的求解中,可以列出一天最大直接收益的整数规划,求得最大的直接收益是42860元;而在问题二的求解中,由于教授一个星期只能工作四天,副教授一个星期只能工作五天,在这样的约束条件下,列出一个星期里最大直接收益的整数规划模型,求得其最大直接收益是198720元。

2 问题概括

数学系的教师资源有限,现有四个项目来源于四个不同的客户,工作的难易程度不一,各项目对有关技术人员的报酬不同。所以:

1.在满足工作要求的情况下,如何分配数学系现有的技术力量,使得其一天的直接收益最大?

2.在教授与副教授工作时间受到约束的条件下,如何分配数学系现有的技术力量,使得其在一个星期里的直接收益最大?

3 建模过程

3.1 边界说明

1.不同技术力量的人每天被安排工作的几率是相等的,且相同职称的个人去什么地方工作是随机的;

2.客户除了支付规定的工资额外,在工作期间里,还要支付所有相关的花费(如餐费,车费等);

3.当天工作当天完成.

3.2 符号约定

在这里插入图片描述

3.3 分析

由题意可知各项目对不同职称人员人数都有不同的限制和要求.对客户来说质量保证是关键,而教授相对稀缺,因此各项目对教授的配备有不能少于一定数目的限制.其中由于项目技术要求较高,助教不能参加.而两项目主要工作是在办公室完成,所以每人每天有50元的管理费开支.

由以上分析可得:最大直接收益=总收益-技术人员工资-、两地保管费.

3.4 模型建立

在这里插入图片描述在这里插入图片描述在这里插入图片描述

3.5 模型求解

相关数据表格如下:
数学系的职称结构及工资情况
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4 模型评价与推广

本模型通过合理的假设,充分考虑各方面的限制条件,得出的人员安排和直接收益

都是本模型的最优解与最优值,对武汉大学数学系的人力资源安排有一定的指导作用。但从模型假设中,我们可以知道对数

学系现有的技术力量的安排是随机的,在相同工作时段里,可能会出现部分人工作次数较多,而部分人较少的不公平情况。

所以在满足工作需求的情况下,分配工作时应该要人为地尽量使得每个人的工作次数不要相差太远,或者相等。

此模型通过对人力资源的调配,从量化的角度得出数学系的最大直接收益。利用此模型的方法可以求出所有类似本模型的线性规划模型。但是,本模型只是单目标的规划,可以在此基础上,增加目标要求。如在数学系的直接收益尽可能大的基础上,使得客户所花费的资金最少,等等。从而建立多目标规划模型。解决更为复杂的实际问题。

5 实现代码

f=[-1000;-800;-550;-450;-1500;-800;-650;-550;-1300;-900;-650;-350;-1000;-800;-650;-450];
A=zeros(9,16);
for i=1:1for j=1:16A(i,j)=1; end
end
for i=2:5for j=i-1:4:11+iA(i,j)=1;end
end
i0=0;
for i=6:9for j=i0+1:(i-5 )*4A(i,j)=1;endi0=j;
end
b=[64;17;20;15;18;12;25;17;10];
Aeq=zeros(1,16);
Aeq(1,3)=1;
beq=[2];
LB=[1;2;2;1;2;2;2;2;2;2;2;1;1;3;1;0];
UB=[3;5;2;2;inf;inf;inf;8;inf;inf;inf;inf;inf;inf;inf;0];
[x,fval]=linprog(f,A,b,Aeq,beq,LB,UB)f=[-1000;-1000;-1000;-1000;-1000;-1000;-1000;-1500;-1500;-1500;-1500;-1500;-1500;-1500;-1250;-1250;-1250;-1250;-1250;-1250;-1250;-950;-950;-950;-950;-950;-950;-950;-800;-800;-800;-800;-800;-800;-800;-800;-800;-800;-800;-800;-800;-800;-850;-850;-850;-850;-850;-850;-850;-750;-750;-750;-750;-750;-750;-750;-600;-600;-600;-600;-600;-600;-600;-700;-700;-700;-700;-700;-700;-700;-650;-650;-650;-650;-650;-650;-650;-650;-650;-650;-650;-650;-650;-650;-500;-500;-500;-500;-500;-500;-500;-600;-600;-600;-600;-600;-600;-600;-350;-350;-350;-350;-350;-350;-350;-450;-450;-450;-450;-450;-450;-450];
A=zeros(60,112);
for i=1;1for j=1:112A(i,j)=1;end 
end
i0=0;
for i=2:4for j=i0+1:(i-1)*28A(i,j)=1;endi0=j;
end
for i=5:32for j=(i-4):28:80+iA(i,j)=1;end
end
for i=33:39for j= i-32:7:(i-11)A(i,j)=1;end
end
j0=j;
for i=40:46for j=j0+(i-39):7:(i-18)+j0A(i,j)=1;end
end
j0=j;
for i=47:53for j=j0+(i-46):7:j0+(i-25)A(i,j)=1;end
end
j0=j;
for i=54:60for j=j0+(i-53):7:j0+(i-32)A(i,j)=1;end
end
b=[362;48;125;119;17;17;17;17;17;17;17;20;20;20;20;20;20;20;15;15;15;15;15;15;15;18;18;18;18;18;18;18;12;12;12;12;12;12;12;25;25;25;25;25;25;25;17;17;17;17;17;17;17;10;10;10;10;10;10;10];
UB=[3;3;3;3;3;3;3;5;5;5;5;5;5;5;3;3;3;3;3;3;3;2;2;2;2;2;2;2;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;8;8;8;8;8;8;8;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;0;0;0;0;0;0;0];
LB=[1;1;1;1;1;1;1;2;2;2;2;2;2;2;1;1;1;1;1;1;1;1;1;1;1;1;1;1;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;1;1;1;1;1;1;1;1;1;1;1;1;1;1;3;3;3;3;3;3;3;1;1;1;1;1;1;1;0;0;0;0;0;0;0];
Aeq=zeros(7,112);
for i=1:7Aeq(i,i+14)=1;
end
beq=[2;2;2;2;2;2;2];
[x,fval]=linprog(f,A,b,Aeq,beq,LB,UB)

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

相关文章:

2023年高教社杯 国赛数学建模思路 - 复盘:人力资源安排的最优化模型

文章目录 0 赛题思路1 描述2 问题概括3 建模过程3.1 边界说明3.2 符号约定3.3 分析3.4 模型建立3.5 模型求解 4 模型评价与推广5 实现代码 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 描述 …...

React内置函数之startTransition与useTransition

React内置函数之startTransition,useTransition 在React中,使用startTransition和useTransition这两个内置函数可以帮助我们更好地管理组件的过渡状态。这两个函数的出现,旨在提供一种简单而强大的方式,来处理组件状态的变化&…...

观察者模式简介

概念: 观察者模式(Observer Pattern)是一种行为型设计模式,用于在对象之间建立一对多的依赖关系,当一个对象的状态发生变化时,其相关依赖对象会自动收到通知并进行相应处理。 特点: 松耦合&a…...

统计程序两个点之间执行的指令数量

环境:支持perf ubuntu安装 apt-get install linux-tools-common linux-tools-generic linux-tools-uname -randroid 一般自带simpleperf 分析 两个点作差, 求中间结果; *(int*)nullptr 0;案例 断点 1 代码 #define SETPOINT(...) do { *(int*)nullptr 0; } while(0…...

时序预测 | MATLAB实现基于TSO-XGBoost金枪鱼算法优化XGBoost的时间序列预测(多指标评价)

时序预测 | MATLAB实现基于TSO-XGBoost金枪鱼算法优化XGBoost的时间序列预测(多指标评价) 目录 时序预测 | MATLAB实现基于TSO-XGBoost金枪鱼算法优化XGBoost的时间序列预测(多指标评价)预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab实现基于TSO-XGBoost金枪鱼算…...

java- ConcurrentHashMap 并发

1. ConcurrentHashMap 并发 1.1. 减小锁粒度 减小锁粒度是指缩小锁定对象的范围,从而减小锁冲突的可能性,从而提高系统的并发能力。减小锁粒度是一种削弱多线程锁竞争的有效手段,这种技术典型的应用是 ConcurrentHashMap(高性能的 HashMap)…...

java练习8.100m小球落地

题目: 如一个小球从100米高度自由落下,每次落地后就反跳回原高度的一半。 那么求它在第10次落地时,共经过多少米?第10次反弹多高? public static void main(String[] args) {/*假如一个小球从100米高度自由落下,每次落…...

Android JNI系列详解之生成指定CPU的库文件

一、前提 这次主要了解Android的cpu架构类型,以及在使用CMake工具的时候,如何指定生成哪种类型的库文件。 如上图所示,是我们之前使用CMake工具默认生成的四种cpu架构的动态库文件:arm64-v8a、armeabi-v7a、x86、x86_64&#xff0…...

Leetcode每日一题:1448. 统计二叉树中好节点的数目

原题 给你一棵根为 root 的二叉树,请你返回二叉树中好节点的数目。 「好节点」X 定义为:从根到该节点 X 所经过的节点中,没有任何节点的值大于 X 的值。 示例 1: 输入:root [3,1,4,3,null,1,5] 输出:4 解…...

华为OD七日集训第2期 - 按算法分类,由易到难,循序渐进,玩转OD(文末送书)

目录 一、适合人群二、本期训练时间三、如何参加四、7日集训第2期五、精心挑选21道高频100分经典题目,作为入门。第1天、逻辑分析第2天、字符串处理第3天、数据结构第4天、递归回溯第5天、二分查找第6天、深度优先搜索dfs算法第7天、动态规划 六、集训总结1、《代码…...

3d max插件CG MAGIC中的蜂窝材质功能可提升效率吗?

工作中能提升效率也都是大家所想的,对于设计师的一个设计过程中,可能想怎么样可以更快呀,是哪个步骤慢了呢? 这样的结果只能说会很多,但是建模这个步骤,肯定是有多无少的。 为了让模型更加逼真&#xff0c…...

一句话木马攻击复现:揭示黑客入侵的实战过程

这篇文章旨在用于网络安全学习&#xff0c;请勿进行任何非法行为&#xff0c;否则后果自负。 准备环境 OWASP虚拟机xfp 7与xshell 7 ​ DVWA系统默认的账号密码均为&#xff1a;admin/admin 1、命令注入中复现 ​ 攻击payload 127.0.0.1 | echo "<?php eval(…...

【游戏开发教程】Unity Cinemachine快速上手,详细案例讲解(虚拟相机系统 | 新发出品 | 良心教程)

文章目录 一、前言二、插件下载三、案例1&#xff1a;第三人称自由视角&#xff0c;Free Look character场景1、场景演示2、组件参数2.1、CinemachineBrain&#xff1a;核心2.2、CinemachineFreeLook&#xff1a;第三人称自由视角相机2.2.1、设置Follow&#xff1a;跟随2.2.2、…...

当图像宽高为奇数时,如何计算 I420 格式的uv分量大小

背景 I420 中 yuv 数据存放在3个 planes 中。 网上一般说 I420 数据大小为 widthheight1.5 但是当 width 和 height 是奇数时&#xff0c;这个计算公式会有问题。 I420 中 u 和 v 的宽高分别为 y 的一半。 但是当不能整除时&#xff0c;是如何取整呢&#xff1f;向上还是向下&…...

结构型模式-代理模式

代理模式* 定义&#xff1a;在代理模式&#xff08;Proxy Pattern&#xff09;中&#xff0c;一个类代表另一个类的功能。这种类型的设计模式属于结构型模式。在代理模式中&#xff0c;我们创建具有现有对象的对象&#xff0c;以便向外界提供功能接口。 意图&#xff1a;为其…...

SpringBoot+Redis BitMap 实现签到与统计功能

最近项目里需要集成签到和统计功能&#xff0c;连续签到后会给用户发放一些优惠券和奖品&#xff0c;以此来吸引用户持续在该品台进行活跃。下面我们一些来聊一聊目前主流的实现方案。 因为签到和统计的功能涉及的数据量比较大&#xff0c;所以在如此大的数据下利用传统的关系…...

P5739 【深基7.例7】计算阶乘

题目描述 求 n ! n! n!&#xff0c;也就是 1 2 3 ⋯ n 1\times2\times3\dots\times n 123⋯n。 挑战&#xff1a;尝试不使用循环语句&#xff08;for、while&#xff09;完成这个任务。 输入格式 第一行输入一个正整数 n n n。 输出格式 输出一个正整数&#xff0c…...

scikit-learn中OneHotEncoder用法

One-Hot编码&#xff0c;又称为一位有效编码&#xff0c;是分类变量作为二进制向量的表示。这首先要求将分类值映射到整数值&#xff0c;然后&#xff0c;每个整数值被表示为二进制向量&#xff0c;将整数索引标记为1&#xff0c;其余都标为0。 OneHotEncoder()常用参数解释 …...

linux操作系统的权限的深入学习(未完)

1.Linux权限的概念 Linux下有两种用户&#xff1a;超级用户&#xff08;root&#xff09;、普通用户。 超级用户&#xff1a;可以再linux系统下做任何事情&#xff0c;不受限制 普通用户&#xff1a;在linux下做有限的事情。 超级用户的命令提示符是“#”&#xff0c;普通用户…...

C 连接MySQL8

Linux 安装MySQL 8 请参考文章&#xff1a;Docker 安装MySQL 8 详解 Visual Studio 2022 编写C 连接MySQL 8 C源码 #include <stdio.h> #include <mysql.h> int main(void) {MYSQL mysql; //数据库句柄MYSQL_RES* res; //查询结果集MYSQL_ROW row; //记录结…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

Xela矩阵三轴触觉传感器的工作原理解析与应用场景

Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知&#xff0c;帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量&#xff0c;能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度&#xff0c;还为机器人、医疗设备和制造业的智…...