当前位置: 首页 > news >正文

基于相空间重构的混沌背景下微弱信号检测算法matlab仿真,对比SVM,PSO-SVM以及GA-PSO-SVM

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 SVM

4.2 PSO-SVM

4.3 GA-PSO-SVM

5.算法完整程序工程


1.算法运行效果图预览

 

 

SVM:

 

  PSO-SVM:

 

GA-PSO-SVM:

 

 以上仿真图参考文献《基于相空间重构的混沌背景下微弱信号检测方法研究》

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

................................................
while gen < MAXGEN;   genw       = wmax-gen*(wmax-wmin)/MAXGEN;FitnV = ranking(Objv);    Selch = select('sus',Chrom,FitnV);    Selch = recombin('xovsp',Selch,0.9);   Selch = mut(Selch,0.1);   phen1 = bs2rv(Selch,FieldD);   %基于粒子群的速度更新for i=1:1:NINDif gen > 1va(i)  = w*va(i) + c1*rand(1)*(phen1(i,1)-taos2)   + c2*rand(1)*(taos-taos2);vb(i)  = w*vb(i) + c1*rand(1)*(phen1(i,2)-ms2)     + c2*rand(1)*(ms-ms2);vc(i)  = w*vc(i) + c1*rand(1)*(phen1(i,3)-Cs2)     + c2*rand(1)*(Cs-Cs2);vd(i)  = w*vd(i) + c1*rand(1)*(phen1(i,4)-gammas2) + c2*rand(1)*(gammas-gammas2);elseva(i)  = 0;vb(i)  = 0;vc(i)  = 0;vd(i)  = 0;endendfor a=1:1:NIND  Data1(a,:) = phen1(a,:);      tao        = round(Data1(a,1) + 0.15*va(i));%遗传+PSOm          = round(Data1(a,2) + 0.15*vb(i));C          = Data1(a,3)       + 0.15*vc(i);gamma      = Data1(a,4)       + 0.15*vd(i);if tao >= max1tao  = max1;endif tao <= min1tao  = min1;end     if m >= max2m = max2;endif m <= min2m = min2;end  if C >= max3C = max3;endif C <= min3C = min3;end  if gamma >= max4gamma = max4;endif gamma <= min4gamma = min4;end   %计算对应的目标值[epls,tao,m,C,gamma] = func_fitness(X_train,X_test,tao,m,C,gamma);E                    = epls;JJ(a,1)              = E;end Objvsel=(JJ);    [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);   gen=gen+1; %保存参数收敛过程和误差收敛过程以及函数值拟合结论Error(gen) = mean(JJ);pause(0.2);[V,I] = min(Objvsel);JI      = I;tmpps    = Data1(JI,:);taos2    = round(tmpps(1));ms2      = round(tmpps(2));Cs2      = tmpps(3);gammas2  = tmpps(4);
end [V,I] = min(Objvsel);
JI      = I;
tmpps   = Data1(JI,:);
tao0    = round(tmpps(1));
m0      = round(tmpps(2));
C0      = tmpps(3);
gamma0  = tmpps(4);%save GAPSO.mat tao0 m0 C0 gamma0
endif SEL == 2
load GAPSO.mat
%调用四个最优的参数
tao   = tao0;
m     = m0;
C     = C0;
gamma = gamma0;%先进行相空间重构
[Xn ,dn ] = func_CC(X_train,tao,m);
[Xn1,dn1] = func_CC(X_test,tao,m);t  = 1/1:1/1:length(dn1)/1;
f  = 0.05;
sn = 0.0002*sin(2*pi*f*t);
%叠加
dn1 = dn1 + sn';%SVM训练%做单步预测
cmd = ['-s 3',' -t 2',[' -c ', num2str(C)],[' -g ',num2str(gamma)],' -p 0.000001']; 
model = svmtrain(dn,Xn,cmd);
%SVM预测
[Predict1,error1] = svmpredict(dn1,Xn1,model);
RMSE              = sqrt(sum((dn1-Predict1).^2)/length(Predict1));
Err               = dn1-Predict1;
%误差获取
clc;
RMSE figure;
plot(Err,'b');
title('混沌背景信号的预测误差'); 
xlabel('样本点n');
ylabel('误差幅值');Fs = 1;
y  = fftshift(abs(fft(Err)));
N  = length(y)
fc = [-N/2+1:N/2]/N*Fs;figure;
plot(fc(N/2+2:N),y(N/2+2:N));
xlabel('归一化频率');
ylabel('频谱');
text(0.06,0.07,'f=0.05Hz');end
07_006m

4.算法理论概述

4.1 SVM

       支持向量机(Support Vector Machine,SVM)是一种用于分类和回归的机器学习方法,其原理基于寻找一个最优超平面(或者曲线在非线性情况下)来划分不同类别的数据点。SVM 的目标是找到一个能够最大化不同类别之间的间隔(margin)的超平面,从而在未知数据上取得良好的泛化能力。

        SVM 的目标是找到一个超平面,使得距离超平面最近的数据点(支持向量)到超平面的距离(间隔)最大。这个间隔可以用数据点到超平面的函数距离来表示,即:

SVM 的目标是解决以下优化问题: 

        在非线性情况下,SVM 可以通过引入核函数将数据从原始特征空间映射到高维特征空间,从而找到一个在高维空间中的超平面来进行分类。常见的核函数包括线性核、多项式核、高斯核(RBF核)等。
        总结起来,SVM 的原理在于寻找一个最优的超平面或曲线,使得不同类别之间的间隔最大化,从而实现分类任务。它的优势在于能够处理高维数据、非线性问题,并且在一定程度上能够抵抗过拟合。

4.2 PSO-SVM

       在将PSO应用于SVM的优化过程中,我们主要关注SVM的超参数,如核函数类型、正则化参数C等。PSO算法可以帮助我们找到一组超参数,使得SVM在训练数据上的性能最佳。

        在PSO-SVM中,适应度函数通常是SVM在训练集上的性能指标,如准确率、F1分数等。通过PSO算法优化SVM的超参数,可以帮助我们找到一组最优的超参数配置,从而提高SVM在分类问题中的性能表现。这种方法可以在一定程度上自动搜索超参数空间,避免了手动调整的繁琐过程。

4.3 GA-PSO-SVM

       GA-PSO结合了遗传算法的群体进化和粒子群优化的局部搜索能力。遗传算法通过模拟生物进化的过程,通过交叉、变异等操作对种群中的个体进行优化。粒子群优化模拟了鸟群或鱼群等自然界中群体行为,通过个体历史最优和群体历史最优来调整粒子的位置。

        在将GA-PSO应用于SVM的优化过程中,我们主要关注SVM的超参数,如核函数类型、正则化参数C等。GA-PSO算法可以帮助我们在超参数空间中搜索到更优的解,以提高SVM在训练数据上的性能。GA-PSO的公式包括遗传算法的选择、交叉和变异操作,以及粒子群优化的速度和位置更新公式。这些公式可以根据具体的算法变体进行调整。

        总体而言,GA-PSO算法将遗传算法和粒子群优化结合起来,通过遗传算法的全局搜索和粒子群优化的局部搜索,以及SVM的性能评估,实现对SVM超参数的优化。这种方法可以更全面地搜索超参数空间,从而提高SVM在分类问题中的性能。

5.算法完整程序工程

OOOOO

OOO

O

相关文章:

基于相空间重构的混沌背景下微弱信号检测算法matlab仿真,对比SVM,PSO-SVM以及GA-PSO-SVM

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 SVM 4.2 PSO-SVM 4.3 GA-PSO-SVM 5.算法完整程序工程 1.算法运行效果图预览 SVM: PSO-SVM: GA-PSO-SVM: 以上仿真图参考文献《基于相空间重构的混沌背景下微弱信号检测方法研究》 2.…...

开发者必备:推荐将闲置iPad Pro打造为编程工具,使用VS Code编写代码

文章目录 前言1. 本地环境配置2. 内网穿透2.1 安装cpolar内网穿透(支持一键自动安装脚本)2.2 创建HTTP隧道 3. 测试远程访问4. 配置固定二级子域名4.1 保留二级子域名4.2 配置二级子域名 5. 测试使用固定二级子域名远程访问6. iPad通过软件远程vscode6.1 创建TCP隧道 7. ipad远…...

c++,标准库std中全局函数 _Destroy_in_place(...)的分析

&#xff08;1&#xff09;该函数的定义和位置如下&#xff1a; 可见&#xff0c;传入形参为某种类型的引用&#xff0c;该函数会执行形参的析构函数&#xff0c;还可以有效解决数组的连续析构。很强大的函数。 &#xff08;2&#xff09;疑问是&#xff0c;若形参是指针类型…...

java:Tomcat

文章目录 背景服务器web 服务器服务资源的分类服务器软件的分类nginx 和 tomact总结 安装Tomcatbrew安装官网压缩包安装IDEA集成IDEA插件 说明 背景 在讲 Tomcat 是啥之前&#xff0c;我们先来了解一些概念。 服务器 可以理解为一个高性能的电脑&#xff0c;但是这个电脑现在…...

US-P2F-R-C双线圈插头式比例阀放大器

US-P2F-R-C型插头式安装比例放大器控制不带电反馈的单或双比例电磁铁的比例阀&#xff0c;如比例插装阀、比例方向阀、比例压力阀、比例流量阀、比例叠加阀等&#xff0c;带数显区显示及当前参数&#xff0c;如指令、电流、上下斜坡、颤振频率等&#xff0c;指令类型兼容0-10V、…...

clickhouse一次异常排查记录

clickhouse中报错 关闭了自启动&#xff0c;删了status&#xff0c;重启了clickhouse还是报错 1&#xff0c;排查定时执行的脚本日志&#xff08;每小时第5分钟执行&#xff09; INSERT INTO quality0529.previously_reported_urls (url) SELECT url FROM quality0529.hourly_…...

Python 数据可视化:玩转 Matplotlib 的散点图、线形图、饼图和热力图

前言 我们来探讨其他几种常用的数据可视化图形:散点图、线形图、饼图和热力图。 可视化图形的优点~ 数据可视化图表是数据分析和演示的重要手段,它有以下优点: 快速理解信息:通过图表,人们可以迅速捕捉到数据的主要模式和趋势,而不需要详细查看每个数据点。 增强记忆:…...

基于python+pyqt实现opencv银行卡身份证等识别

效果展示 识别结果 查看处理过程 历史记录 完整演示视频&#xff1a; 无法粘贴视频........ 完整代码链接 视频和代码都已上传百度网盘&#xff0c;放在主页置顶文章...

惠普台式机装系统记录

1. 问题集锦 1.必须装双系统&#xff0c;就是必须得有win系统&#xff0c;不然会出现蓝屏&#xff1b; 2.装win系统之后&#xff0c;再装ubuntu系统&#xff0c;会出现rst的问题&#xff0c;基本无解&#xff0c;放弃&#xff1b; 2. 装机步骤&#xff1a; 第一步&#xff1a…...

java八股文面试[JVM]——垃圾回收

参考&#xff1a;JVM学习笔记&#xff08;一&#xff09;_卷心菜不卷Iris的博客-CSDN博客 GC垃圾回收面试题&#xff1a; JVM内存模型以及分区&#xff0c;需要详细到每个区放什么 堆里面的分区&#xff1a;Eden&#xff0c;survival from to&#xff0c;老年代&#xff0c;各…...

iOS开发Swift-控制流

1.For-In循环 //集合循环 let names ["a", "b", "c"] for name in names {print("Hello, \(name)!") } //次数循环 for index in 1...5{print("Hello! \(index)") } //不需要值时可以使用 _ 来忽略此值 for _ in 1...5{…...

leetcode875. 爱吃香蕉的珂珂(java)

二分查找 爱吃香蕉的珂珂二分查找 上期经典 爱吃香蕉的珂珂 难度 - 中等 LC - 875.爱吃香蕉的珂珂 珂珂喜欢吃香蕉。这里有 n 堆香蕉&#xff0c;第 i 堆中有 piles[i] 根香蕉。警卫已经离开了&#xff0c;将在 h 小时后回来。 珂珂可以决定她吃香蕉的速度 k &#xff08;单位&…...

LeetCode-406-根据身高重建队列

题目描述&#xff1a; 假设有打乱顺序的一群人站成一个队列&#xff0c;数组 people 表示队列中一些人的属性&#xff08;不一定按顺序&#xff09;。每个 people[i] [hi, ki] 表示第 i 个人的身高为 hi &#xff0c;前面 正好 有 ki 个身高大于或等于 hi 的人。 请你重新构造…...

JVM——类加载与字节码技术—编译期处理+类加载阶段

3.编译期处理 编译期优化称为语法糖 3.1 默认构造器 3.2 自动拆装箱 java基本类型和包装类型之间的自动转换。 3.3泛型集合取值 在字节码中可以看见&#xff0c;泛型擦除就是字节码中的执行代码不区分是String还是Integer了&#xff0c;统一用Object. 对于取出的Object&…...

C#|如何调试进依赖动态库中

第一步&#xff1a;打开项目属性 第二步 打开debug的本地调试可用 第三步 把要调试的代码拖进主界面打断点就可以进断点了...

全新版本QStack云管系统3.5.3 附详细安装教程

源码介绍&#xff1a; QStack云管系统3.5.3&#xff0c;全新版本下载安装包详细搭建教程。 涵盖了服务器、云主机、代理IP等多种云产品管理运维和安全存储。 同时&#xff0c;QStack还支持对接运营众多公有云厂商产品资源&#xff0c;满足不同用户的需求。 通过开放API和插…...

SLB 负载均衡

优质博文&#xff1a;IT-BLOG-CN 一、简介 SLB (Server Loader Balancer&#xff09;将访问流量根据转发策略分发到后台多台服务器的流量分发控制服务&#xff0c;来实现多台服务器提供相同的业务服务。负载均衡扩展了应用的服务能力&#xff0c;增强了应用的可用性。主要用于…...

多核调度预备知识

进程调度的本质 任务/进程切换 即&#xff1a;上下文切换&#xff0c;内核对处理器上执行的进程进行切换“上下文” 指&#xff1a;寄存器的值“上下文切换”指&#xff1a; 将寄存器的值保存到内存中(进程被剥夺处理器&#xff0c;停止执行)将另一组寄存器的值从内存中加载到…...

什么是Git?解释Git的分布式版本控制系统的优势?

1、什么是Git&#xff1f;解释Git的分布式版本控制系统的优势&#xff1f; Git是一个开源的分布式版本控制系统&#xff0c;用于跟踪和管理代码库的版本历史。它允许用户在本地计算机上跟踪和管理代码库的更改&#xff0c;并与其他人协作开发项目。Git的分布式特性意味着它不需…...

软考高级系统架构设计师系列论文九十五:图书馆网络应用体系安全设计

软考高级系统架构设计师系列论文九十五:图书馆网络应用体系安全设计 一、网络应用体系安全设计相关知识点二、摘要三、正文四、总结一、网络应用体系安全设计相关知识点 软考高级系统架构设计师:计算机网络...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...