基于相空间重构的混沌背景下微弱信号检测算法matlab仿真,对比SVM,PSO-SVM以及GA-PSO-SVM
目录
1.算法运行效果图预览
2.算法运行软件版本
3.部分核心程序
4.算法理论概述
4.1 SVM
4.2 PSO-SVM
4.3 GA-PSO-SVM
5.算法完整程序工程
1.算法运行效果图预览
SVM:
PSO-SVM:
GA-PSO-SVM:
以上仿真图参考文献《基于相空间重构的混沌背景下微弱信号检测方法研究》
2.算法运行软件版本
MATLAB2022a
3.部分核心程序
................................................
while gen < MAXGEN; genw = wmax-gen*(wmax-wmin)/MAXGEN;FitnV = ranking(Objv); Selch = select('sus',Chrom,FitnV); Selch = recombin('xovsp',Selch,0.9); Selch = mut(Selch,0.1); phen1 = bs2rv(Selch,FieldD); %基于粒子群的速度更新for i=1:1:NINDif gen > 1va(i) = w*va(i) + c1*rand(1)*(phen1(i,1)-taos2) + c2*rand(1)*(taos-taos2);vb(i) = w*vb(i) + c1*rand(1)*(phen1(i,2)-ms2) + c2*rand(1)*(ms-ms2);vc(i) = w*vc(i) + c1*rand(1)*(phen1(i,3)-Cs2) + c2*rand(1)*(Cs-Cs2);vd(i) = w*vd(i) + c1*rand(1)*(phen1(i,4)-gammas2) + c2*rand(1)*(gammas-gammas2);elseva(i) = 0;vb(i) = 0;vc(i) = 0;vd(i) = 0;endendfor a=1:1:NIND Data1(a,:) = phen1(a,:); tao = round(Data1(a,1) + 0.15*va(i));%遗传+PSOm = round(Data1(a,2) + 0.15*vb(i));C = Data1(a,3) + 0.15*vc(i);gamma = Data1(a,4) + 0.15*vd(i);if tao >= max1tao = max1;endif tao <= min1tao = min1;end if m >= max2m = max2;endif m <= min2m = min2;end if C >= max3C = max3;endif C <= min3C = min3;end if gamma >= max4gamma = max4;endif gamma <= min4gamma = min4;end %计算对应的目标值[epls,tao,m,C,gamma] = func_fitness(X_train,X_test,tao,m,C,gamma);E = epls;JJ(a,1) = E;end Objvsel=(JJ); [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel); gen=gen+1; %保存参数收敛过程和误差收敛过程以及函数值拟合结论Error(gen) = mean(JJ);pause(0.2);[V,I] = min(Objvsel);JI = I;tmpps = Data1(JI,:);taos2 = round(tmpps(1));ms2 = round(tmpps(2));Cs2 = tmpps(3);gammas2 = tmpps(4);
end [V,I] = min(Objvsel);
JI = I;
tmpps = Data1(JI,:);
tao0 = round(tmpps(1));
m0 = round(tmpps(2));
C0 = tmpps(3);
gamma0 = tmpps(4);%save GAPSO.mat tao0 m0 C0 gamma0
endif SEL == 2
load GAPSO.mat
%调用四个最优的参数
tao = tao0;
m = m0;
C = C0;
gamma = gamma0;%先进行相空间重构
[Xn ,dn ] = func_CC(X_train,tao,m);
[Xn1,dn1] = func_CC(X_test,tao,m);t = 1/1:1/1:length(dn1)/1;
f = 0.05;
sn = 0.0002*sin(2*pi*f*t);
%叠加
dn1 = dn1 + sn';%SVM训练%做单步预测
cmd = ['-s 3',' -t 2',[' -c ', num2str(C)],[' -g ',num2str(gamma)],' -p 0.000001'];
model = svmtrain(dn,Xn,cmd);
%SVM预测
[Predict1,error1] = svmpredict(dn1,Xn1,model);
RMSE = sqrt(sum((dn1-Predict1).^2)/length(Predict1));
Err = dn1-Predict1;
%误差获取
clc;
RMSE figure;
plot(Err,'b');
title('混沌背景信号的预测误差');
xlabel('样本点n');
ylabel('误差幅值');Fs = 1;
y = fftshift(abs(fft(Err)));
N = length(y)
fc = [-N/2+1:N/2]/N*Fs;figure;
plot(fc(N/2+2:N),y(N/2+2:N));
xlabel('归一化频率');
ylabel('频谱');
text(0.06,0.07,'f=0.05Hz');end
07_006m
4.算法理论概述
4.1 SVM
支持向量机(Support Vector Machine,SVM)是一种用于分类和回归的机器学习方法,其原理基于寻找一个最优超平面(或者曲线在非线性情况下)来划分不同类别的数据点。SVM 的目标是找到一个能够最大化不同类别之间的间隔(margin)的超平面,从而在未知数据上取得良好的泛化能力。
SVM 的目标是找到一个超平面,使得距离超平面最近的数据点(支持向量)到超平面的距离(间隔)最大。这个间隔可以用数据点到超平面的函数距离来表示,即:
SVM 的目标是解决以下优化问题:
在非线性情况下,SVM 可以通过引入核函数将数据从原始特征空间映射到高维特征空间,从而找到一个在高维空间中的超平面来进行分类。常见的核函数包括线性核、多项式核、高斯核(RBF核)等。
总结起来,SVM 的原理在于寻找一个最优的超平面或曲线,使得不同类别之间的间隔最大化,从而实现分类任务。它的优势在于能够处理高维数据、非线性问题,并且在一定程度上能够抵抗过拟合。
4.2 PSO-SVM
在将PSO应用于SVM的优化过程中,我们主要关注SVM的超参数,如核函数类型、正则化参数C等。PSO算法可以帮助我们找到一组超参数,使得SVM在训练数据上的性能最佳。
在PSO-SVM中,适应度函数通常是SVM在训练集上的性能指标,如准确率、F1分数等。通过PSO算法优化SVM的超参数,可以帮助我们找到一组最优的超参数配置,从而提高SVM在分类问题中的性能表现。这种方法可以在一定程度上自动搜索超参数空间,避免了手动调整的繁琐过程。
4.3 GA-PSO-SVM
GA-PSO结合了遗传算法的群体进化和粒子群优化的局部搜索能力。遗传算法通过模拟生物进化的过程,通过交叉、变异等操作对种群中的个体进行优化。粒子群优化模拟了鸟群或鱼群等自然界中群体行为,通过个体历史最优和群体历史最优来调整粒子的位置。
在将GA-PSO应用于SVM的优化过程中,我们主要关注SVM的超参数,如核函数类型、正则化参数C等。GA-PSO算法可以帮助我们在超参数空间中搜索到更优的解,以提高SVM在训练数据上的性能。GA-PSO的公式包括遗传算法的选择、交叉和变异操作,以及粒子群优化的速度和位置更新公式。这些公式可以根据具体的算法变体进行调整。
总体而言,GA-PSO算法将遗传算法和粒子群优化结合起来,通过遗传算法的全局搜索和粒子群优化的局部搜索,以及SVM的性能评估,实现对SVM超参数的优化。这种方法可以更全面地搜索超参数空间,从而提高SVM在分类问题中的性能。
5.算法完整程序工程
OOOOO
OOO
O
相关文章:

基于相空间重构的混沌背景下微弱信号检测算法matlab仿真,对比SVM,PSO-SVM以及GA-PSO-SVM
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 SVM 4.2 PSO-SVM 4.3 GA-PSO-SVM 5.算法完整程序工程 1.算法运行效果图预览 SVM: PSO-SVM: GA-PSO-SVM: 以上仿真图参考文献《基于相空间重构的混沌背景下微弱信号检测方法研究》 2.…...

开发者必备:推荐将闲置iPad Pro打造为编程工具,使用VS Code编写代码
文章目录 前言1. 本地环境配置2. 内网穿透2.1 安装cpolar内网穿透(支持一键自动安装脚本)2.2 创建HTTP隧道 3. 测试远程访问4. 配置固定二级子域名4.1 保留二级子域名4.2 配置二级子域名 5. 测试使用固定二级子域名远程访问6. iPad通过软件远程vscode6.1 创建TCP隧道 7. ipad远…...

c++,标准库std中全局函数 _Destroy_in_place(...)的分析
(1)该函数的定义和位置如下: 可见,传入形参为某种类型的引用,该函数会执行形参的析构函数,还可以有效解决数组的连续析构。很强大的函数。 (2)疑问是,若形参是指针类型…...

java:Tomcat
文章目录 背景服务器web 服务器服务资源的分类服务器软件的分类nginx 和 tomact总结 安装Tomcatbrew安装官网压缩包安装IDEA集成IDEA插件 说明 背景 在讲 Tomcat 是啥之前,我们先来了解一些概念。 服务器 可以理解为一个高性能的电脑,但是这个电脑现在…...

US-P2F-R-C双线圈插头式比例阀放大器
US-P2F-R-C型插头式安装比例放大器控制不带电反馈的单或双比例电磁铁的比例阀,如比例插装阀、比例方向阀、比例压力阀、比例流量阀、比例叠加阀等,带数显区显示及当前参数,如指令、电流、上下斜坡、颤振频率等,指令类型兼容0-10V、…...

clickhouse一次异常排查记录
clickhouse中报错 关闭了自启动,删了status,重启了clickhouse还是报错 1,排查定时执行的脚本日志(每小时第5分钟执行) INSERT INTO quality0529.previously_reported_urls (url) SELECT url FROM quality0529.hourly_…...
Python 数据可视化:玩转 Matplotlib 的散点图、线形图、饼图和热力图
前言 我们来探讨其他几种常用的数据可视化图形:散点图、线形图、饼图和热力图。 可视化图形的优点~ 数据可视化图表是数据分析和演示的重要手段,它有以下优点: 快速理解信息:通过图表,人们可以迅速捕捉到数据的主要模式和趋势,而不需要详细查看每个数据点。 增强记忆:…...

基于python+pyqt实现opencv银行卡身份证等识别
效果展示 识别结果 查看处理过程 历史记录 完整演示视频: 无法粘贴视频........ 完整代码链接 视频和代码都已上传百度网盘,放在主页置顶文章...

惠普台式机装系统记录
1. 问题集锦 1.必须装双系统,就是必须得有win系统,不然会出现蓝屏; 2.装win系统之后,再装ubuntu系统,会出现rst的问题,基本无解,放弃; 2. 装机步骤: 第一步:…...

java八股文面试[JVM]——垃圾回收
参考:JVM学习笔记(一)_卷心菜不卷Iris的博客-CSDN博客 GC垃圾回收面试题: JVM内存模型以及分区,需要详细到每个区放什么 堆里面的分区:Eden,survival from to,老年代,各…...
iOS开发Swift-控制流
1.For-In循环 //集合循环 let names ["a", "b", "c"] for name in names {print("Hello, \(name)!") } //次数循环 for index in 1...5{print("Hello! \(index)") } //不需要值时可以使用 _ 来忽略此值 for _ in 1...5{…...

leetcode875. 爱吃香蕉的珂珂(java)
二分查找 爱吃香蕉的珂珂二分查找 上期经典 爱吃香蕉的珂珂 难度 - 中等 LC - 875.爱吃香蕉的珂珂 珂珂喜欢吃香蕉。这里有 n 堆香蕉,第 i 堆中有 piles[i] 根香蕉。警卫已经离开了,将在 h 小时后回来。 珂珂可以决定她吃香蕉的速度 k (单位&…...

LeetCode-406-根据身高重建队列
题目描述: 假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] [hi, ki] 表示第 i 个人的身高为 hi ,前面 正好 有 ki 个身高大于或等于 hi 的人。 请你重新构造…...

JVM——类加载与字节码技术—编译期处理+类加载阶段
3.编译期处理 编译期优化称为语法糖 3.1 默认构造器 3.2 自动拆装箱 java基本类型和包装类型之间的自动转换。 3.3泛型集合取值 在字节码中可以看见,泛型擦除就是字节码中的执行代码不区分是String还是Integer了,统一用Object. 对于取出的Object&…...

C#|如何调试进依赖动态库中
第一步:打开项目属性 第二步 打开debug的本地调试可用 第三步 把要调试的代码拖进主界面打断点就可以进断点了...

全新版本QStack云管系统3.5.3 附详细安装教程
源码介绍: QStack云管系统3.5.3,全新版本下载安装包详细搭建教程。 涵盖了服务器、云主机、代理IP等多种云产品管理运维和安全存储。 同时,QStack还支持对接运营众多公有云厂商产品资源,满足不同用户的需求。 通过开放API和插…...
SLB 负载均衡
优质博文:IT-BLOG-CN 一、简介 SLB (Server Loader Balancer)将访问流量根据转发策略分发到后台多台服务器的流量分发控制服务,来实现多台服务器提供相同的业务服务。负载均衡扩展了应用的服务能力,增强了应用的可用性。主要用于…...

多核调度预备知识
进程调度的本质 任务/进程切换 即:上下文切换,内核对处理器上执行的进程进行切换“上下文” 指:寄存器的值“上下文切换”指: 将寄存器的值保存到内存中(进程被剥夺处理器,停止执行)将另一组寄存器的值从内存中加载到…...
什么是Git?解释Git的分布式版本控制系统的优势?
1、什么是Git?解释Git的分布式版本控制系统的优势? Git是一个开源的分布式版本控制系统,用于跟踪和管理代码库的版本历史。它允许用户在本地计算机上跟踪和管理代码库的更改,并与其他人协作开发项目。Git的分布式特性意味着它不需…...
软考高级系统架构设计师系列论文九十五:图书馆网络应用体系安全设计
软考高级系统架构设计师系列论文九十五:图书馆网络应用体系安全设计 一、网络应用体系安全设计相关知识点二、摘要三、正文四、总结一、网络应用体系安全设计相关知识点 软考高级系统架构设计师:计算机网络...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...

Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...

什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...

el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...

Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...

Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...