pandas和polars简单的对比分析
pandas
pandas是基于python写的,底层的数据结构是Numpy数据(ndarray)。pandas自身有两个核心的数据结构:DataFrame和Series,前者是二维的表格数据结构,后者是一维标签化数组。
polars
polars是用Rust(一种系统级编程语言,具有非常好的并发性和性能)写的,支持Python、Rust和NodeJS。主要特性有:
- 快:Polars从零开始,没有任何扩展依赖,底层设计(import速度非常快)。
- I/O:完美支持常见的数据存储层:本地、云存储、数据库。
- 使用简单:使用它的内置操作,Polars内部决定使用最有效的方法执行。
- 核外:Polars支持使用它的streaming API操作核外数据转化。基于磁盘的内存映射技术,大数据下允许数据在磁盘和内存之间进行高效的交换。可以处理比机器可用RAM更大的数据集。
- 并行:Polars在不增加额外配置事,会充分利用机器可利用的cpu(可利用的所有核)。
- 矢量查询引擎:Polars使用Apache Arrow(一种列式数据格式,Arrow内存格式支持零拷贝读取,以实现闪电般快速的数据访问,而无需序列化开销)。以矢量的方式处理queries。它使用SIMD(单指令多数据,一种并行处理方式)优化CPU的利用。
pandas vs polars
-
性能:pandas提供了强大的数据分析功能,对处理小数据集更方便。polars利用多线程和内存映射技术,具有更快的速度,适合处理大型数据集。
-
内存使用:Pandas在加载数据时需要将其完全读入内存;polars支持streaming API操作核外数据转化,可以在处理大型数据集时降低内存使用,从而减少了内存限制。
-
数据操作:pandas具有丰富的数据操作和处理方法,使用DataFrame进行数据清洗、转换、分组、聚合等操作;Polars提供了类似于SQL的查询操作,使得对数据进行筛选、转换和聚合更加直观。
-
生态系统:pandas已经非常成熟,具有大量的学习文档、教程和扩展库;polars相对较新,对应的文档、教程等资源较少。
-
适用场景:pandas更适用于中小型数据集的数据分析和处理;polars更适用于大型数据集或追求更高性能的数据分析和处理场景。
运行时间对比
数据读取
# train.parquet: 2.35G
%time train_pd=pd.read_parquet('/Users/Downloads/archive/train.parquet') #Pandas dataframe
%time train_pl=pl.read_parquet('/Users/Downloads/archive/train.parquet') #Polars dataframe
CPU times: user 3.85 s, sys: 8.69 s, total: 12.5 s
Wall time: 10.4 s
CPU times: user 3.07 s, sys: 2.22 s, total: 5.29 s
Wall time: 3.39 s
聚合操作
%%time
# pandas query
nums = ["num_7", "num_8", "num_9", "num_10", "num_11", "num_12", "num_13", "num_14", "num_15"]
cats = ["cat_1", "cat_2", "cat_3", "cat_4", "cat_5", "cat_6"]
train_pd[nums].agg(['min','max','mean','median','std']) %%time
# Polars query
train_pl.with_columns([ pl.col(nums).min().suffix('_min'), pl.col(nums).max().suffix('_max'), pl.col(nums).mean().suffix('_mean'), pl.col(nums).median().suffix('_median'), pl.col(nums).std().suffix('_std'),
])
CPU times: user 6.06 s, sys: 4.19 s, total: 10.3 s
Wall time: 15.8 s
CPU times: user 4.51 s, sys: 5.49 s, total: 10 s
Wall time: 8.09 s
查询后计算
# Pandas filter and select
%time train_pd[train_pd['cat_1']==1][nums].mean()
# Polars filter and select
%time train_pl.filter(pl.col("cat_1") == 1).select(pl.col(nums).mean())
CPU times: user 730 ms, sys: 1.65 s, total: 2.38 s
Wall time: 4.24 s
CPU times: user 659 ms, sys: 3.22 s, total: 3.88 s
Wall time: 2.12 s
分类再聚合
%time Function_3= train_pd.groupby(['user'])[nums].agg('mean')
%time Function_3 = train_pl.groupby('user').agg(pl.col(nums).mean())
CPU times: user 2.4 s, sys: 938 ms, total: 3.33 s
Wall time: 3.46 s
CPU times: user 6.92 s, sys: 2.68 s, total: 9.6 s
Wall time: 1.78 s
分组的列逐渐增加
# PANDAS: TESTING GROUPING SPEED ON 5 COLUMNS
cols = []
for cat in ['user', 'cat_1', 'cat_2', 'cat_3', 'cat_4']:cols+=[cat] st=time.time() temp=train_pd.groupby(cols)['num_7'].agg('mean') en=time.time() print(f"{cat}:{round(en-st, 4)}s") # POLARS: TESTING GROUPING SPEED ON 5 COLUMNS
cols = []
for cat in ['user', 'cat_1', 'cat_2', 'cat_3', 'cat_4']: cols+=[cat] st=time.time() temp=train_pl.groupby(cols).agg(pl.col('num_7').mean()) en=time.time() print(f"{cat}:{round(en-st, 4)}s")
每增加一列进行groupby后计算,所需要的时间:
cols 耗时 [“user”] 0.7666s [“user”,“cat_1”] 1.8221s [“user”,“cat_1”,“cat_2”] 9.4581s [“user”,“cat_1”,“cat_2”,“cat_3”] 15.1409s [“user”,“cat_1”,“cat_2”,“cat_3”,“cat_4”] 16.5913s
cols 耗时 [“user”] 0.498s [“user”,“cat_1”] 1.1978s [“user”,“cat_1”,“cat_2”] 3.4107s [“user”,“cat_1”,“cat_2”,“cat_3”] 4.4749s [“user”,“cat_1”,“cat_2”,“cat_3”,“cat_4”] 4.6821s
排序
cols=['user','num_8'] # columns to be used for sorting
# Sorting in Pandas
%time a = train_pd.sort_values(by=cols,ascending=True)
#Sorting in Polars
%time b = train_pl.sort(cols,descending=False)
CPU times: user 31.9 s, sys: 7.28 s, total: 39.2 s
Wall time: 46.2 s
CPU times: user 32.2 s, sys: 7.04 s, total: 39.2 s
Wall time: 11.6 s
相关文章:
pandas和polars简单的对比分析
pandas pandas是基于python写的,底层的数据结构是Numpy数据(ndarray)。pandas自身有两个核心的数据结构:DataFrame和Series,前者是二维的表格数据结构,后者是一维标签化数组。 polars polars是用Rust(一种系统级编程…...
Feign远程调用的使用
假设已配好nacos服务:并且已配好userservice、orderservice,点击跳转 Feign是一个声明式的http客户端,官方地址:https://github.com/OpenFeign/feign,其作用就是在程序中帮助我们优雅的实现http请求的发送,…...
Postman API测试之道:不止于点击,更在于策略
引言:API测试的重要性 在当今的软件开发中,API已经成为了一个不可或缺的部分。它们是软件组件之间交互的桥梁,确保数据的流动和功能的实现。因此,对API的测试显得尤为重要,它不仅关乎功能的正确性,还涉及到…...
5G 数字乡村数字农业农村大数据中心项目农业大数据建设方案PPT
导读:原文《5G 数字乡村数字农业农村大数据中心项目农业大数据建设方案PPT》(获取来源见文尾),本文精选其中精华及架构部分,逻辑清晰、内容完整,为快速形成售前方案提供参考。以下是部分内容, 喜…...
Golang Gorm 一对多的添加
一对多的添加有两种情况: 一种是添加用户的时候同时创建文章其次是创建文章关联已经存在的用户。 package mainimport ("gorm.io/driver/mysql""gorm.io/gorm" )// User 用户表 一个用户拥有多篇文章 type User struct {ID int64Name …...
图像扭曲之锯齿
源码: void wave_sawtooth(cv::Mat& src,cv::Mat& dst,double amplitude,double wavelength) {dst.create(src.rows, src.cols, CV_8UC3);dst.setTo(0);double xAmplitude amplitude;double yAmplitude amplitude;int xWavelength wavelength;int yWave…...
【分布式技术专题】「OSS中间件系列」Minio的文件服务的存储模型及整合Java客户端访问的实战指南
Minio的元数据 数据存储 MinIO对象存储系统没有元数据数据库,所有的操作都是对象级别的粒度的,这种做法的优势是: 个别对象的失效,不会溢出为更大级别的系统失效。便于实现"强一致性"这个特性。此特性对于机器学习与大数据处理非…...
构建个人博客_Obsidian_github.io_hexo
1 初衷 很早就开始分享文档,以技术类的为主,一开始是 MSN,博客,随着平台的更替,后来又用了 CSDN,知乎,简书…… 再后来是 Obsidian,飞书,Notion,常常有以下困…...
烟花厂人员作业释放静电行为检测算法
烟花厂人员作业释放静电行为检测算法通过pythonyolo系列算法模型框架,烟花厂人员作业释放静电行为检测算法在工厂车间入口处能够及时捕捉到人员是否触摸静电释放仪。一旦检测到人员进入时没有触摸静电释放仪,系统将自动触发告警。Python是一种由Guido va…...
ARTS挑战第二周-T:PHP数组相关操作
array_combine() 函数 合并两个数组 array_combine()传入2个参数,使用方法如下 array_combine(array $keys, array $values): array 返回一个 array,用来自 keys 数组的值作为键名,来自 values 数组的值作为相应的值。 array_key_exists() 函…...
【如何对公司网络进行限速?一个案例详解】
有不少朋友问到了关于企业网络QoS配置,这个确实在实际网络应用中非常多,基本上大部分企业或个人都用到这个功能,本期我们详细了解下QoS如何对宽带进行限制,QoS如何企业中应用。 一、什么是QoS? Qos是用来解决网络延迟和阻塞等问…...
服务器安全-修改默认ssh端口
防火墙先打开指定端口,要不修改后连不上(端口需要在65535之内) firewall-cmd --list-ports firewall-cmd --add-port54111/tcp --permanent firewall-cmd --reload-------------------- 先让两个端口同时存在,等配置成功后关闭22端口 vim /etc/ssh/sshd_config重启sshd service…...
保护隐私的第一步:从更新浏览器开始
当今社会已经进入了数字化和网络化的时代,而网络安全问题也日益突显。随着互联网在我们生活中的不断渗透,网络威胁变得愈发普遍和隐蔽。在这样的背景下,网络浏览器作为人们访问互联网的主要工具之一,不仅为我们提供了便捷的上网方…...
Python爬虫框架之快速抓取互联网数据详解
概要 Python爬虫框架是一个能够帮助我们快速抓取互联网数据的工具。在互联网时代,信息爆炸式增长,人们越来越需要一种快速获取信息的方式。而Python爬虫框架就能够帮助我们完成这个任务,它可以帮助我们快速地从互联网上抓取各种数据…...
【算法专题突破】双指针 - 盛最多水的容器(4)
目录 1. 题目解析 2. 算法原理 3. 代码编写 写在最后: 1. 题目解析 题目链接:11. 盛最多水的容器 - 力扣(Leetcode) 这道题目也不难理解, 两边的柱子的盛水量是根据短的那边的柱子决定的, 而盛水量…...
循环神经网络(RNN) | 项目还不成熟 |还在初级阶段
一,定义 循环神经网络(Recurrent Neural Network,RNN)是一种深度学习神经网络架构,专门设计用于处理序列数据,如时间序列数据、自然语言文本等(一般用来解决序列问题)。 因为它们具…...
【Spring Boot】数据库持久层框架MyBatis — MyBatis简介
MyBatis简介 本节首先会介绍什么是ORM、什么是MyBatis、MyBatis的特点以及核心概念,最后介绍MyBatis是如何启动、如何加载配置文件的? 1.什么是ORM ORM(Object Relational Mapping,对象关系映射)是为了解决面向对象…...
K8S Nginx Ingress实现金丝雀发布
通过给 Ingress 资源指定 Nginx Ingress 所支持的 annotation 可实现金丝雀发布。 需给服务创建2个 Ingress,其中1个常规 Ingress,另1个为带 nginx.ingress.kubernetes.io/canary: "true" 固定的 annotation 的 Ingress,称为 Cana…...
【C++入门】new和delete(C/C++内存管理)
目录 1.C/C内存分布2.C语言中动态内存管理方式3.C内存管理方式3.1new/delete操作内置类型3.2new和delete操作自定义类型 4.operator new与operator delete函数5.new和delete的实现原理5.1内置类型5.2自定义类型 6.malloc/free和new/delete的区别7.定位new表达式(了解…...
C++设计模式之桥接模式
文章目录 一、桥接模式二、std::error_code与设计模式(桥接模式)参考 一、桥接模式 在C中,桥接模式通常涉及以下几个角色: 抽象类接口(Abstraction):定义抽象部分的接口,并维护一个…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】
大家好,我是java1234_小锋老师,看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】,分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...
NPOI Excel用OLE对象的形式插入文件附件以及插入图片
static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...
