【数据分析】统计量
1. 均值、众数描述数据的集中趋势度量,四分位差、极差描述数据的离散程度。
2. 标准差、四分位差、异众比率度量离散程度,协方差是度量相关性。
期望值分别为E[X]与E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义为:
从直观上来看,协方差表示的是两个变量总体误差的期望。
如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。
但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。
3. 卡方检验可以分析分类变量之间的相关性。http://t.csdn.cn/SZSy6
4. t检验:t检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。 只能分析数值型变量。

5. 皮尔逊相关系数是一种衡量变量之间线性关系强弱的统计量。它的取值范围在-1到1之间,可以反映出两个变量之间的相关程度。如果相关系数接近1,表明两个变量之间存在完全正向的线性关系;如果接近-1,则说明存在完全负向的线性关系;如果接近0,则表示两个变量之间没有线性关系。

皮尔逊相关系数的计算方法如下:
r = Cov(X, Y) / (σX * σY)
其中,Cov(X, Y)表示变量X和Y的协方差,σX和σY分别表示变量X和Y的标准差。通过计算协方差和标准差,我们可以得到两个变量之间的相关系数。
只能分析数值型变量。
例子:百度安全验证
6. 列联相关:列联相关又称列联相关系数(contingencycorrelation)又称均方相依系数或接触系数,是指当两列数据中至少有一列是多分类资料时,描述变量之间的相互关系的品质相关系数。
可以分析分类变量之间的相关性。
7. SQL中的关键字:float浮点型、int 整数型、char 文本型、decimal 定点型
8. HAVING 子句中的筛选字段必须是可以出现在分组结果中的字段
9. 多维数据库——雪花模式
雪花模式是集中代表事实表的连接到多个层面 ,是类似星型模式 。

星型模型:星型模式是多维的数据关系,它由事实表(Fact Table)和维表(Dimension Table)组成。每个维表中都会有一个维作为主键,所有这些维的主键结合成事实表的主键。事实表的非主键属性称为事实,它们一般都是数值或其他可以进行计算的数据。

交叉模型:
相关文章:
【数据分析】统计量
1. 均值、众数描述数据的集中趋势度量,四分位差、极差描述数据的离散程度。 2. 标准差、四分位差、异众比率度量离散程度,协方差是度量相关性。 期望值分别为E[X]与E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义为: 从直观上来看&…...
【通用消息通知服务】0x4 - 目前进展 阶段复盘
【通用消息通知服务】0x4 - 阶段复盘 达成 基本的API已经写完✍️了(消息查看发送, 模板crud,终端crud,发送渠道crud,计划crud,计划执行查看)拆分server, executor, planner三个入口, 方便针对性水平扩展整体架构初步形成,通过队列实现了事件驱动模型和消息订阅发…...
vue若依导出word文件,简单的实现
首先前端导包,注意exportDocx的导包位置要修改成你自己的 import {exportDocx} from /utils/docUtil/docutil.js; import {addDays} from date-fns; import {listGongyi} from "/api/system/detail";然后新建一个测试按钮 <el-col :span"1.5"><…...
【LeetCode75】第四十题 最大层内元素和
目录 题目: 示例: 分析: 代码: 题目: 示例: 分析: 这道题和LeetCode75的上一题大同小异,都是要我们对二叉树进行层序遍历。 那具体如何层序遍历我再上一题也详细介绍过了&#…...
脱离束缚:数字化工厂中ARM控制器的革命性应用!
近年来,中国数字经济体系已进入高速增长阶段。制造业作为中国经济高质量发展的重要支撑力量,在面临生产成本不断上涨、关键装备和核心零部件“受制于人”等挑战时,建设数字化工厂已成必然。 数字化工厂数据采集出现的问题 在数字工厂的建设…...
queue ide is not exists in YARN
报错内容: 2023-08-17 17:30:31.342 [ERROR] [BaseTaskScheduler-Thread-7 ] o.a.l.o.s.a.AsyncExecTaskRunnerImpl (79) [run] - Failed to execute task astJob_1_codeExec_1 org.apache.linkis.orchestrator.ecm.exception.ECMPluginErrorException: errCode:…...
【C++】UDP通信:客户端向服务端发送消息并接收服务端回应的消息
目录 1 UDP简介 2 通信 3 实践 4 运行结果 1 UDP简介 (1)UDP通信是无连接的,因此不需要connect操作。 (2)UDP通信过程需要指定数据接收端的IP和端口。 (3)UDP不对收到的数据进行排序。 (4)UDP对接收到的数据报不回复确认信息。 (5)如果发生了数据丢失,不会丢一…...
RabbitMq深度学习
什么是RabbitMq? RabbitMQ是一个开源的消息队列中间件,它实现了高级消息队列协议(AMQP)。它被广泛用于分布式系统中的消息传递和异步通信。RabbitMQ提供了一种可靠的、可扩展的机制来传递消息,使不同的应用程序能够相互之间进行…...
EasyExcel自定义字段对象转换器支持转换实体和集合实体
文章目录 1. 实现ObjectConverter2. 使用3. 测试3.1 导出excel3.2 导入excel 1. 实现ObjectConverter package com.tophant.cloud.common.excel.converters;import cn.hutool.json.JSONUtil; import com.alibaba.excel.converters.Converter; import com.alibaba.excel.enums.…...
Linux重置ROOT密码(CentOS)
解释说明 在CentOS中重置root密码通常需要进入单用户模式,这是一个没有密码限制的特殊模式,允许您以root权限登录系统并更改密码。 重启系统 如果您无法登录到系统,可以通过重启系统来开始这个过程。您可以使用虚拟机控制台、物理服务器控制台…...
【Spring】一文带你彻底搞懂IOC、AOP
目录 首先简单了解一下什么是spring框架 什么是IOC? 什么是依赖注入(DI)? 控制反转和依赖注入又有什么关系? AOP是什么? SpringAOP的实现 说了这么多抽象概念,举个实例方便理解 首先简单…...
国际旅游网络的大数据分析(数学建模练习题)
题目:国际旅游网络的大数据分析 伴随着大数据时代的到来,数据分析已经深入到现代社会生活中的各个方面。 无论是国家政府部门、企事业单位还是个人,数据分析工作都是进行决策之前的 重要环节。 山东省应用统计学会是在省民政厅注册的学术类社会组织&…...
音视频技术开发周刊 | 308
每周一期,纵览音视频技术领域的干货。 新闻投稿:contributelivevideostack.com。 OpenAI首席科学家最新访谈:对模型创业两点建议、安全与对齐、Transformer够好吗? OpenAI首席科学家Ilya Sutskever最近和他的朋友Sven Strohband进…...
多旋翼飞控底层算法开发系列实验 | 多旋翼动力系统设计实验3
多旋翼动力系统设计实验3 01/多旋翼动力系统简介 多旋翼无人机的动力系统通常包括螺旋桨、电机、电调以及电池。动力系统是多旋翼最重要的组成部分,它决定了多旋翼的主要性能,如悬停时间、载重能力、飞行速度和飞行距离等。动力系统的部件…...
Redis之Sentinel(哨兵)机制
一、Sentinel是什么? Sentinel(哨岗、哨兵)是Redis的高可用性(high availability)解决方案:由一个或多个Sentinel实例(instance)组成的Sentinel系统(system)…...
加密的PDF文件,如何解密?
PDF文件带有打开密码、限制编辑,这两种密码设置了之后如何解密? 不管是打开密码或者是限制编辑,在知道密码的情况下,解密PDF密码,我们只需要在PDF编辑器中打开文件 – 属性 – 安全,将权限状态修改为无保护…...
【java】获取当前年份
目录 一、代码示例二、截图示例 一、代码示例 package com.learning;import java.text.SimpleDateFormat; import java.time.LocalDate; import java.time.Year; import java.util.Calendar; import java.util.Date;/*** 获取当前年份*/ public class GetCurrentYear {public …...
前端面试话术集锦第一篇
🚗前端面试集锦目录 💖前端面试话术集锦第一篇💖 💖前端面试话术集锦第二篇💖 文章目录 1. 前端需要注意哪些SEO2. \<img>的title和alt有什么区别3. HTTP的⼏种请求⽅法⽤途4. 从浏览器地址栏输⼊url到显示⻚⾯的步骤5. 如何进⾏⽹站性能优化6. HTTP状态码及其…...
NeRFMeshing - 精确提取NeRF中的3D网格
准确的 3D 场景和对象重建对于机器人、摄影测量和 AR/VR 等各种应用至关重要。 NeRF 在合成新颖视图方面取得了成功,但在准确表示底层几何方面存在不足。 推荐:用 NSDT编辑器 快速搭建可编程3D场景 我们已经看到了最新的进展,例如 NVIDIA 的 …...
后端面试话术集锦第五篇:rabbitmq面试话术
🚗后端面试集锦目录 💖后端面试话术集锦第 1 篇:spring面试话术💖 💖后端面试话术集锦第 2 篇:spring boot面试话术💖 💖后端面试话术集锦第 3 篇:spring cloud面试话术💖 💖后端面试话术集锦第 4 篇:ElasticSearch面试话术💖 💖后端面试话术集锦第 5 …...
网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...
c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...
什么是VR全景技术
VR全景技术,全称为虚拟现实全景技术,是通过计算机图像模拟生成三维空间中的虚拟世界,使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验,结合图文、3D、音视频等多媒体元素…...
