5.1 线程
文章目录
- 1.概述
- 2.多线程的特性
- 2.1 随机性
- 2.2 CPU分时调度
- 2.3 线程的状态
- 2.4 线程状态与代码对照
- 3.多线程代码实现方式1:继承Thread
- 3.1 概述
- 3.2 常用方法
- 3.3 测试多线程的创建方式1
- 4.多线程代码实现方式2:实现Runnable接口
- 4.1 概述
- 4.2 常用方法
- 4.3 练习2:测试多线程的创建方式2
- 5.俩种方式的比较
1.概述
在学习线程之前我们先要了解进程与线程区别与概念;
进程可以简单理解为运行中的程序,是动态的;而线程是系统中可以运行调度的最小单位;
一个进程可以包含多个线程,被称为多线程程序,也可以只包含一个线程,称为单线程程序;
在电脑运行中,主要就是靠其核心CPU来处理各种任务以及调度的,目前市场中的CPU均为多核心CPU,在宏观上,大家可能觉得CPU是在同时处理很多事情,但其实从微观上来讲,同一时刻,CPU只能处理一件事情,只是其处理时间短,切换时间快,在很短的时间内在多个任务之间进行处理切换,所以给人的错觉,是他在同时处理很多任务。
进程会占用对应的内存区域,由CPU进行执行和运算,其有三大特点:
- 独立性
进程是系统中独立存在的实体,它可以拥有自己独立的资源,每个进程都拥有自己私有的地址空间,在没有经过进程本身允许的情况下,一个用户进程不可以直接访问其他进程的地址空间 - 动态性
进程与程序的区别在于,程序只是一个静态的指令集合,而进程是一个正在系统中活动的指令集合,程序加入了时间的概念以后,称为进程,具有自己的生命周期和各种不同的状态,这些概念都是程序所不具备的 - 并发性
多个进程可以在单个处理器CPU上并发执行,多个进程之间不会互相影响
而线程便是被包含在进程之中,是操作系统可以运行调度的最小单位,多线程程序中会有一个主程序来调用本进程中的其他线程,进行任务协同;
日常我们进行的进程切换,其实只是切换的不同进程的主线程,这样更加节省资源。
每个线程在共享同一个进程中的内存的同时,又有自己独立的内存空间.
所以想使用线程技术,得先有进程,进程的创建是OS操作系统来创建的,一般都是C或者C++完成
2.多线程的特性
2.1 随机性
我们宏观上觉得多个进程是同时运行的,但实际的微观层面上,一个CPU【单核】只能执行一个进程中的一个线程。
那为什么看起来像是多个进程同时执行呢?
是因为CPU以纳秒级别甚至是更快的速度高效切换着,超过了人的反应速度,这使得各个进程从看起来是同时进行的,也就是说,宏观层面上,所有的进程看似并行【同时运行】,但是微观层面上是串行的【同一时刻,一个CPU只能处理一件事】。
串行与并行:
串行是指同一时刻一个CPU只能处理一件事,类似于单车道
并行是指同一时刻多个CPU可以处理多件事,类似于多车道
2.2 CPU分时调度
时间片,即CPU分配给各个线程的一个时间段,称作它的时间片,即该线程被允许运行的时间,如果在时间片用完时线程还在执行,那CPU将被剥夺并分配给另一个线程,将当前线程挂起,如果线程在时间片用完之前阻塞或结束,则CPU当即进行切换,从而避免CPU资源浪费,当再次切换到之前挂起的线程,恢复现场,继续执行。
注意:我们无法控制OS选择执行哪些线程,OS底层有自己规则,如:
- FCFS(First Come First Service 先来先服务算法)
- SJS(Short Job Service短服务算法)
2.3 线程的状态
由于线程状态比较复杂,我们由易到难,先学习线程的三种基础状态及其转换,简称”三态模型” :
- 就绪(可运行)状态:线程已经准备好运行,只要获得CPU,就可立即执行
- 执行(运行)状态:线程已经获得CPU,其程序正在运行的状态
- 阻塞状态:正在运行的线程由于某些事件(I/O请求等)暂时无法执行的状态,即线程执行阻塞
就绪 → 执行:为就绪线程分配CPU即可变为执行状态" 执行 → 就绪:正在执行的线程由于时间片用完被剥夺CPU暂停执行,就变为就绪状态
执行 → 阻塞:由于发生某事件,使正在执行的线程受阻,无法执行,则由执行变为阻塞 (例如线程正在访问临界资源,而资源正在被其他线程访问)
反之,如果获得了之前需要的资源,则由阻塞变为就绪状态,等待分配CPU再次执行
我们可以再添加两种状态:
- 创建状态:线程的创建比较复杂,需要先申请PCB,然后为该线程运行分配必须的资源,并将该线程转为就绪状态插入到就绪队列中
- 终止状态:等待OS进行善后处理,最后将PCB清零,并将PCB返回给系统
PCB(Process Control
Block):为了保证参与并发执行的每个线程都能独立运行,OS配置了特有的数据结构PCB来描述线程的基本情况和活动过程,进而控制和管理线程
2.4 线程状态与代码对照
线程生命周期,主要有五种状态:
- 新建状态(New) : 当线程对象创建后就进入了新建状态.如:Thread t = new MyThread();
- 就绪状态(Runnable):当调用线程对象的start()方法,线程即为进入就绪状态.
处于就绪(可运行)状态的线程,只是说明线程已经做好准备,随时等待CPU调度执行,并不是执行了t.start()此线程立即就会执行 - 运行状态(Running):当CPU调度了处于就绪状态的线程时,此线程才是真正的执行,即进入到运行状态
就绪状态是进入运行状态的唯一入口,也就是线程想要进入运行状态状态执行,先得处于就绪状态 - 阻塞状态(Blocked):处于运状态中的线程由于某种原因,暂时放弃对CPU的使用权,停止执行,此时进入阻塞状态,直到其进入就绪状态才有机
会被CPU选中再次执行.
根据阻塞状态产生的原因不同,阻塞状态又可以细分成三种: 等待阻塞:运行状态中的线程执行wait()方法,本线程进入到等待阻塞状态
同步阻塞:线程在获取synchronized同步锁失败(因为锁被其他线程占用),它会进入同步阻塞状态
其他阻塞:调用线程的sleep()或者join()或发出了I/O请求时,线程会进入到阻塞状态.当sleep()状态超时.join()等待线程终止或者超时或者I/O
处理完毕时线程重新转入就绪状态 - 死亡状态(Dead):线程执行完了或者因异常退出了run()方法,该线程结束生命周期
3.多线程代码实现方式1:继承Thread
3.1 概述
Thread类本质上是实现了Runnable接口的一个实例,代表一个线程的实例
启动线程的唯一方法就是通过Thread类的start()实例方法
start()方法是一native方法,它将通知底层操作系统,.最终由操作系统启动一个新线程,操作系统将执行run()
这种方式实现的多线程很简单,通过自己的类直接extends Thread,并重写run()方法,就可以自动启动新线程并执行自己定义的run()方法,模拟开启多个线程,每个线程调用run()方法.
3.2 常用方法
构造方法
Thread() 分配新的Thread对象
Thread(String name) 分配新的Thread对象
Thread(Runnable target) 分配新的Thread对象
Thread(Runnable target,String name) 分配新的Thread对象
普通方法
static Thread currentThread( )
返回对当前正在执行的线程对象的引用
long getId()
返回该线程的标识
String getName()
返回该线程的名称
void run()
如果该线程是使用独立的
Runnable 运行对象构造的,则调用该 Runnable 对象的 run 方法
static void sleep(long millions)
指定的毫秒数内让当前正在执行的线程休眠(暂停执行)
void start()
使该线程开始执行:Java虚拟机调用该线程的run()
3.3 测试多线程的创建方式1
package partFour;
/* 本类用于多线程编程实现方案一:继承Thread类来完成*/
public class TestThread1 {public static void main(String[] args) {//4.创建线程对象进行测试/*4.new对应的是线程新建状态* 5.要想模拟多线程,至少需要启动2个线程对象,如果只启动一个,是单线程程序*/MyThread t1 = new MyThread();MyThread t2 = new MyThread();MyThread t3 = new MyThread();MyThread t4 = new MyThread();/*6.这个run方法,如果直接这样调用,是没有多线程抢占执行的效果的,只是把这俩句话看做普通方法的调用* 谁先写,就先执行谁*///t1.run();//t2.run();/*7.start()对应的状态就是就绪状态,会把刚刚新建好的线程加入到就绪队列之中* 至于什么时候执行,就是多线程执行的效果,需要等待os选中分配cpu* 8.执行的时候,start()底层会自动调用我们重写的run()分配的业务* 9.线程的执行具有随机性,也就是说t1-t4具体怎么执行* 取决于CPU的调度时间片的分配,我们是决定不了的*/t1.start();//以多线程的方式启动线程1,将当前线程变为就绪状态t2.start();//以多线程的方式启动线程2,将当前线程变为就绪状态t3.start();//以多线程的方式启动线程3,将当前线程变为就绪状态t4.start();//以多线程的方式启动线程4,将当前线程变为就绪状态}
}//1.自定义一个多线程类,然后让这个类继承Thread
class MyThread extends Thread{/*多线程编程实现的方案1:Thread是底层方法* 通过继承Thread类,并重写run()方法来完成*///2.重写run(),run()里是我们自己的业务@Overridepublic void run(){/* super.run()表示调用父类的业务,我们现在调用自己的业务,所以注释掉*///super.run();//3.完成业务:打印10次当前正在执行的线程名称for(int i=0; i<10; i++){/*getName()表示可以获取当前正在执行的线程名称* 由于本类继承了Thread类,所以可以直接使用这个方法*/System.out.println(i+"="+getName());}}
}
多线程编程实现方案1:
- 自定义多线程类Thread
- 重写run(),里面是我们的业务
- 创建多个线程对象
- 线程对象调用start(),以多线程的方式启动
4.多线程代码实现方式2:实现Runnable接口
4.1 概述
如果自己的类已经extends另一个类,就无法多继承,此时,可以实现一个Runnable接口
4.2 常用方法
通过创建实现Runnable接口的类的对象来创建线程,启动该线程将导致在独立执行的线程中调用对象的run()方法;
4.3 练习2:测试多线程的创建方式2
package partFour;
/*本类用于多线程编程实现方案二:实现Runnable接口来完成*/
public class TestThread2 {public static void main(String[] args) {//5.创建自定义类的对象MyRunnable target = new MyRunnable();//6.启动线程/*MyRunnable和Runnable中没有start方法* 需要与Thread建立关系,使用Thread的方法 */Thread t1 = new Thread(target);Thread t2 = new Thread(target);Thread t3 = new Thread(target);Thread t4 = new Thread(target);t1.start();t2.start();t3.start();t4.start();}
}
//1.自定义多线程类
class MyRunnable implements Runnable{//2.添加父接口中的抽象方法run(),里面是自己的业务@Overridepublic void run(){//3.写业务,打印10次当前正在执行的线程名称for (int i=0; i<10; i++){/*自定义类与父类接口Runnable没有获取名字的方法,需要从Thread方法中调用,但是Thread里的getName()方法不是静态方法,不能直接类名调用* Thread方法中提供了currentThread方法:静态方法,获取当前正在执行的线程对象* 有了对象之后,就可以getName():获取当前线程的名称 */System.out.println(i+"="+Thread.currentThread());}}
}
多线程实现方案2:
- 自定义多线程类实现Runnable接口
- 添加接口中未实现的抽象方法,其中是我们的业务
- 创建一个自定义类对象,作为目标业务类对象
- 创建多个线程对象Thread,并把刚刚的业务交给多个Thread来处理
- 以多线程的方式启动刚刚创建好的多个线程对象start()
5.俩种方式的比较
- 继承Thread类
优点: 编写简单,如果需要访问当前线程,无需使用Thread.currentThread()方法,直接使用this即可获得当前线程
缺点: 自定义的线程类已继承了Thread类,所以后续无法再继承其他的类 - 实现Runnable接口
优点: 自定义的线程类只是实现了Runnable接口或Callable接口,后续还可以继承其他类,在这种方式下,多个线程可以共享同一个target对象,所以非常适合多个相同线程来处理同一份资源的情况,从而可以将CPU、代码、还有数据分开(解耦),形成清晰的模型,较好地体现了面向对象的思想
缺点: 编程稍微复杂,如想访问当前线程,则需使用Thread.currentThread()方法
相关文章:

5.1 线程
文章目录1.概述2.多线程的特性2.1 随机性2.2 CPU分时调度2.3 线程的状态2.4 线程状态与代码对照3.多线程代码实现方式1:继承Thread3.1 概述3.2 常用方法3.3 测试多线程的创建方式14.多线程代码实现方式2:实现Runnable接口4.1 概述4.2 常用方法4.3 练习2:测试多线程的…...
通讯录的实现
一、目的:使用C实现通讯录二、包含功能:添加联系人:向通讯录中添加新人,信息包括(姓名、性别、年龄、联系电话、家庭住址)最多记录1000人显示联系人:显示通讯录中所有联系人信息删除联系人:按照姓名进行删除指定联系人…...
Urho3D导航
Urho3D通过使用Recast和Detour库实现导航网格生成和路径查找。 导航功能通过NavigationMesh和Navigable组件公开。 NavigationMesh从已使用Navigable组件标记的子节点收集几何体。默认情况下,可导航组件的行为是递归的:除非禁用递归,否则也…...

【学习总结】激光雷达与相机外参标定:代码(cam_lidar_calibration)
前段时间尝试了一款激光雷达和相机标定的代码,总结了博客: 【学习总结】激光雷达与相机外参标定:原理与代码 但总觉得那个代码太差劲,而且精度不行,于是又找了些新的代码,体验比之前的好很多,在…...

车载技术开发—{Android CarFrameWork}
Android Automotive平台 Android Automotive是通过Android的通用框架,语言和API来实现的一个全栈,开源,高度可定制的平台。 Android Automotive与整个Android生态系统的关系 Android Automotive是Android的一部分。 Android Automotive不是…...

多城市二手车买卖发布管理小程序开发
多城市二手车买卖发布管理小程序开发 功能特性: 为你介绍二手车微信小程序的功能特性。 车辆分类搜索,支持按品牌、售价、年龄、上牌时间、排量等筛选。 车源发布,支持用户一键发布二手车,平台审核上线,发布可编辑、删除等操作。…...

企业级信息系统开发学习笔记1.2 初探Spring——利用组件注解符精简Spring配置文件
文章目录零、本讲学习目标一、课程引入二、打开项目 - SpringDemo三、利用组件注解符精简Spring配置文件(一)创建新包(二)复制四个类(三)修改杀龙任务类(四)修改救美任务类ÿ…...

37、基于51单片机乒乓球比赛系统设计
摘要 乒乓球游戏电路是一个对输入信号、输入时机正确与否的8个LED表示乒乓球球台和乒乓球,用数码管模拟显示器,显示比赛局数比分和每局玩家得分的电路。电路并不复杂,整体分为两个模块:一,游戏主模块;二&a…...

VMware虚拟机安装Win11最详细过程以及遇到的这台电脑无法运行Windows11的问题
准备工作 在使用VMware虚拟机安装Win11之前我们先把准备工作做好,以免后续思绪混乱导致出错。 1. 到VMware官网或点击链接下载正版VMware Workstation 16 Pro。 2. 双击打开安装包,点击下一步。 3. 阅读用户许可协议,勾选我接受许可协议中的…...

centos误删python2后怎么重新安装
此教程为离线安装 一. 先查询系统版本 cat /proc/version Linux version 3.10.0-1127.el7.x86_64 (mockbuildkbuilder.bsys.centos.org) (gcc version 4.8.5 20150623 (Red Hat 4.8.5-39) (GCC) ) #1 SMP Tue Mar 31 23:36:51 UTC 2020 二. 安装python2.7.5(已知原python版…...

Qt 开发使用VSCode 笔记2
在之前有写过使用VSCode开发QT的笔记 Qt 开发使用VSCode 在以前的基础上继续学习记录写下《Qt 开发使用VSCode 笔记2》 该笔记相比之前的Qt 开发使用VSCode新加了如下内容: 工作区的使用使用Natvis进行Qt感知对象可视化通过vscode创建QT Quick项目 工作区的使用 …...

查找算法复习
先序在了解查找算法之前,需要熟悉几个概念,不然后面容易产生理解错误。查找表:即被查找的对象,通常由几个关键字组成。关键字:就是数据项、字段的意思。关键字有主次之分,其中主关键字取值是唯一的。查找长…...
腾讯前端必会面试题(必备)
如何提取高度嵌套的对象里的指定属性? 有时会遇到一些嵌套程度非常深的对象: const school {classes: {stu: {name: Bob,age: 24,}} }像此处的 name 这个变量,嵌套了四层,此时如果仍然尝试老方法来提取它: const {…...

探访上汽通用武汉奥特能超级工厂
上汽通用汽车在电动化和智能网联化新技术领域投入了700亿大洋,武汉奥特能超级工厂就是其中一个重点项目。这个工厂已经投产,将成为上汽通用汽车的新能源生产基地,加速奥特能平台车型的推出。 最近别克推出了Electra E5,它是别克第…...

【Linux】线程函数和线程同步详细整理(金针菇般细)
目录 一,线程函数 1.获取当前线程ID 2.创建线程 3.退出线程 4.阻塞线程 5.分离线程 6.取消线程 7.线程比较 8.测试代码(线程函数总结) 二,线程同步 1.互斥锁 2.读写锁 3.条件变量 4.信号量 一,线程函数 …...
Python学习笔记6:抽象
抽象 函数 判断某个对象是否可调用,可使用内置函数callable >>> import math >>> x 1 >>> y math.sqrt >>> callable(x) False >>> callable(y) True斐波那契数组 def fibs(num): result [0, 1] for i i…...
自己手写一个redux
提起 Redux 我们想到最多的应该就是 React-redux 这个库,可是实际上 Redux 和 React-redux 并不是同一个东西, Redux 是一种架构模式,源于 Flux。 React-redux 是 Redux 思想与 React 结合的一种具体实现。 在我们使用 React 的时候,常常会遇…...

mysql调优参数
my.conf [client] port 端口 socket sokcet位置 [mysqld] basedir mysql位置 port 3306 socket sokcet位置 datadir data目录 pid_file mysqld.pid位置 bind_address 0.0.0.0 lower_case…...

JavaEE简单示例——再插入的同时获取插入的主键列
简单介绍: 在某些时候,我们在插入完成一条语句之后,我们会想要返回之前插入的这条语句的主键列的数据,进行下一步的展示或者修改,我们就可以使用MyBatis的主键回写功能,帮助我们获取插入成功的一条数据的主…...

sql语句练习
一、现有以下两张表:第一张表名为cust,其表结构如下:第二张表名为mark,其表结构如下:1) [5分]请写出计算 所有学生的英语平均成绩的sq|语句。2) [5分]现有五 个学生,其学号假定分别为11,22,33,44,55;请用一条SQL语句实现列出这五个…...

UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...
OD 算法题 B卷【正整数到Excel编号之间的转换】
文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的:a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...

Linux中《基础IO》详细介绍
目录 理解"文件"狭义理解广义理解文件操作的归类认知系统角度文件类别 回顾C文件接口打开文件写文件读文件稍作修改,实现简单cat命令 输出信息到显示器,你有哪些方法stdin & stdout & stderr打开文件的方式 系统⽂件I/O⼀种传递标志位…...
xmind转换为markdown
文章目录 解锁思维导图新姿势:将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件(ZIP处理)2.解析JSON数据结构3:递归转换树形结构4:Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...