[多标签分类]MultiLabelBinarizer: 从one-hot 到multi-hot
]MultiLabelBinarizer: 从one-hot 到multi-hot
- 背景知识
- One hot encoder
- LabelEncoder
- MultiLabelBinarizer
- 总结
背景知识
多类别分类: label space至少有3个label, 且默认每个sample有一个label, 与之相对应的是二元分类Binary classification,
多标签分类: 每个sample有1至多个labels, 一般多标签分类都是多类别, 有时又称之为多标签多类别分类.
One hot encoder
Scikit-learn中实现了该功能,
from sklearn.preprocessing import OneHotEncoder
如下展示了使用OneHotEncoder对label进行度热编码的过程,
encoder = OneHotEncoder()
labels = ['red', 'green', 'blue', 'blue', 'red']
data = np.array(labels).reshape(-1, 1) # shape: (n, 1)
encoder.fit(data)
print(f'encoder.categories_: {encoder.categories_}')
ans = encoder.transform(data).toarray()
ans_rev = encoder.inverse_transform(ans)
print(f'ans: {ans}')
print(f'ans_rev: {ans_rev}')
实际上除了标签列以外,还可以对属性列进行独热编码, 如下对三个属性列进行独热编码:
enc = OneHotEncoder()
enc.fit([[0, 0, 3],[1, 1, 0],[0, 2, 1],[1, 0, 2]]) # shape: (4, 3)
print(f'enc.categories_: {enc.categories_}')
ans = enc.transform([[0, 1, 3]]).toarray() # shape: (1,3)
ans_rev = enc.inverse_transform(ans)
print(f'ans: {ans}') # [[ 1. 0. 0. 1. 0. 0. 0. 0. 1.]]
print(f'ans_rev: {ans_rev}') # ans_rev: [[0 1 3]]
LabelEncoder
这个函数与OneHotEncoder不同,主要用于建立标签与其索引之间的映射关系, 并不能产生独热编码
from sklearn.preprocessing import LabelEncoder
标签可以是数值,
le = LabelEncoder()
le.fit([1, 2, 2, 6])
print(f'label space: {le.classes_}') # array([1, 2, 6])
print(le.transform([1, 1, 2, 6])) # array([0, 0, 1, 2]...)
print(le.inverse_transform([0, 0, 1, 2])) # array([1, 1, 2, 6])
标签也可以是字符串,
le = LabelEncoder()
le.fit(["paris", "paris", "tokyo", "amsterdam"])
print(f'label space: {le.classes_}') # ['amsterdam', 'paris', 'tokyo']
print(le.transform(["tokyo", "tokyo", "paris"])) # array([2, 2, 1]...)
print(le.inverse_transform([2, 2, 1])) # ['tokyo', 'tokyo', 'paris']
MultiLabelBinarizer
用于对多标签进行multi-hot编码,
from sklearn.preprocessing import MultiLabelBinarizer
下面是一个例子展示
y = [[2,3,4],[2],[0,1,3],[0,1,2,3,4],[0,1,2]]
print(f'#samples: {len(y)}')
mbr = MultiLabelBinarizer()
mbr.fit(y)
print(f'label space: {mbr.classes_}') # array([1, 2, 6])
ans = mbr.transform(y)
ans_rev = mbr.inverse_transform(ans)
print(f'ans: {ans}')
print(f'ans_rev: {ans_rev}')
总结
上面几种函数的API类似,使用方式也一样, 总结如下:
1.fit函数用于从输入数据学习一个编码器, 输入一般为[n,d], 表示n个samples, d维,
特别的, 对于MultiLabelBinarizer, d是不定的, 一维每个sample的标签数量不等.
2.执行fit以后得到的编码器有一个classes_属性, 这个属性实际上就是编码空间(有序的), 后面的编码表示实际上 就是基于编码空间来的.
3.执行transform()可以得到输入的编码表示
4.inverse_transform()的作用与transform()相反,主要用于从编码表示得到原始的输入标签.
相关文章:
[多标签分类]MultiLabelBinarizer: 从one-hot 到multi-hot
]MultiLabelBinarizer: 从one-hot 到multi-hot 背景知识One hot encoderLabelEncoderMultiLabelBinarizer总结 背景知识 多类别分类: label space至少有3个label, 且默认每个sample有一个label, 与之相对应的是二元分类Binary classification, 多标签分类: 每个sample有1至多…...
【校招VIP】前端算法考察之排序
考点介绍: 不同的场景中,不同的排序算法执行效率不同。 稳定:冒泡、插入、归并 不稳定:选择、快速、堆排序、希尔排序 『前端算法考察之排序』相关题目及解析内容可点击文章末尾链接查看! 一、考点题目 1、使用js实…...
集创北方ICN6211 是一款MIPIDSI转RGB视频桥接IC
ICN6211 1.描述: ICN6211是一个桥接芯片,它接收MIPIDSI输入并发送RGB输出。MIPIDSI最多支持4个车道, 每个车道的最大运行频率为1Gbps;总最大输入带宽为4Gbps;并且还支持MIPI定义的ULPS(超 低功耗状态&a…...
SMT制造中的产品质量检验和管理
SMT制造中的质量检验和产品物料管理都是实现高质量、低成本、高效益的重要方法。在SMT加工的过程中,产品质量的检验和质量把控都是重中之重,可以有效的降低产品不良率及返修等造成制造成本升高的风险问题,今天就来跟大家讨论一下SMT制造中我们…...
对接webservice接口时报错:发送方和接收方 Action 不匹配
趁着早上有时间,赶紧记录一下,哈哈。 错误提示如下: 1、英文版: <s:Envelope xmlns:s“http://schemas.xmlsoap.org/soap/envelope/”><s:Body><s:Fault>a:ActionNotSupportedThe message with Action ‘’ ca…...
python实现/直播服务器/聊天服务器/的多种解决方案
python有哪些技术栈 实现直播服务器 在Python中,您可以使用以下技术栈来实现直播服务器: Flask:Flask是一个轻量级的Web框架,可用于构建直播服务器的后端。您可以使用Flask编写API端点来处理直播流的控制和管理。 Django…...
PbootCMS 3.0.4 SQL注入
1.漏洞复现 PbootCMS 3.0.4,下载仓库 星梦/PbootCMS - Gitee.com 复现 漏洞页面:http://127.0.0.1/?search 或 http://127.0.0.1/?keyword POST请求:1select 1 2.正向分析 从可见功能点正向分析 index.php ... // 引用内核启动文件…...
SpringBoot异步方法支持注解@Async应用
SpringBoot异步方法支持注解Async应用 1.为什么需要异步方法? 合理使用异步方法可以有效的提高执行效率 同步执行(同在一个线程中): 异步执行(开启额外线程来执行): 2.SpringBoot中的异步方法支持 在SpringBoot中并不需要我们自己去创建维护线程或者线程池来…...
UI/UX设计与前端开发:从零到一打造完美用户体验
引言 在当今的软件开发领域,UI/UX设计和前端开发是两个密不可分的环节。UI/UX设计师负责创造出直观、美观、用户友好的界面,而前端开发者则将这些设计转化为实际的、可交互的网页或应用。本文将深入探讨这两个领域的交集,并通过代码示例来展…...
Hadoop Hdfs基本命令
0目录 1.hadoop安装问题处理 2.hdfs基本命令 3.上传/下载文件和文件夹 1.hadoop安装问题处理 如果安装有进程无法启动,如下图 重新检查6个配置文件 Core-site.xml \ hdfs-site.xml \ hadoop-env.sh \ yarn-site.xml \ workers \ yarn-site.xml 来到hadoop313目录…...
Spring Boot 整合MyBatis(超详细)
😀前言 本篇博文关于Spring Boot 整合MyBatis,希望你能够喜欢 🏠个人主页:晨犀主页 🧑个人简介:大家好,我是晨犀,希望我的文章可以帮助到大家,您的满意是我的动力&#x…...
【管理运筹学】第 6 章 | 运输问题(4,表上作业法 |闭回路调整法以及特殊情况 | 产销不平衡的运输问题)
文章目录 引言二、表上作业法2.3 改进的方法 —— 闭回路调整法2.4 表上作业法中的特殊情况(一)无穷多最优解(二)退化 三、产销不平衡的运输问题3.1 产量大于销量3.2 销量大于产量 写在最后 引言 接下来我们学习表上作业法的最后…...
Greenplum实用技巧
一、通过gp_segment_id查看数据倾斜 gp_segment_id是表中的隐藏列,用来标记该行属于哪个segment节点。因此可以基于该隐藏列进行分组查询,获取每个segment的记录数,从而判断表数据的分布是否均匀或有倾斜。 qb#select gp_segment_id, count…...
以物联网为核心的智慧工地云平台:聚集智能技术,实现建筑工地智慧管理
智慧工地云平台源码,智慧工地项目监管平台源码,智慧工地可视化数据大屏源码 智慧工地云平台是将云计算、大数据、物联网、移动技术和智能设备等信息化技术手段,聚集在建筑工地施工管理现场,围绕人员、机械、物料、环境等关键要素&…...
Java项目-苍穹外卖-Day05-Redis技术应用
1.店铺营业状态设置 需求分析和设计 左上角要求是有回显的 所以至少两个接口 1.查询营业状态接口(分为了管理端和用户端) 2.修改营业状态接口 因为管理端和用户端路径不同,所以现在是至少三个接口的 可以发现如果存到表里除了id只有一个…...
linux安装jmeter
linux安装jmeter 部署java1.8 下载jmeter安装包:官网、网盘5.6.2版本 # 解压 rootiZbp1at7nu2rpq4xn4zaf1Z:/opt/jmeter# sudo tar -xzf apache-jmeter-5.6.2.tgz # 加入环境变量 rootiZbp1at7nu2rpq4xn4zaf1Z:/opt/jmeter/apache-jmeter-5.6.2# export JMETER/op…...
【笔记】泛型以及如何绕过泛型定义
泛型定义以及其带来的好处 泛型使类型(类和接口)能够在定义类、接口和方法时成为参数。与方法声明中使用的更熟悉的形式参数非常相似,类型参数为您提供了一种通过不同输入重复使用相同代码的方法。区别在于形式参数的输入是值,而…...
JAVA JNA 调用C接口的三种方式
文章目录 1. 准备一个共享库文件2. JNA姿势1—继承Library接口3. JNA姿势2—直接NativeLibrary.getInstance3. JNA姿势3—Native方法 1. 准备一个共享库文件 test.c #include <stdio.h> int test(char *input){printf("input:%s\n",input);return 0; }libtes…...
StarRocks入门到熟悉
1、部署 1.1、注意事项 需要根据业务需求设计严谨的集群架构,一般来说,需要注意以下几项: 1.1.1、FE数量及高可用 FE的Follower要求为奇数个,且并不建议部署太多,通常我们推荐部署1个或3个Follower。在三个Followe…...
华为AR路由器 典型配置案例——以太网交换
目录 Eth-Trunk 例:配置三层链路聚合 组网需求 操作步骤 检查配置结果 配置脚本 VLAN 举例:配置基于接口划分VLAN,实现同一VLAN内的互通(同设备) 组网需求 操作步骤 检查配置结果 配置脚本 举例ÿ…...
XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...
