当前位置: 首页 > news >正文

OpenVINO2023使用简介

1 下载安装

先在anaconda中创建一个虚拟环境,该环境的python版本为3.7,之所以使用python3.7,是因为我在3.9上安装过程中出现不少bug,后面新建了一个3.7的环境才解决,我不知道是否由于和我已有环境中某些包不兼容,还是python3.9版本的问题,总是折腾了很久都没解决,最后新建了一个虚拟环境。
地址
在这里插入图片描述
在这里插入图片描述
实际上就是下面这条命令:

pip install openvino-dev[pytorch]==2023.0.1

这里可以使用清华镜像或者阿里镜像

接下来使用下面这串代码,测试是否安装成功,如果没有报错,说明OpenVINO安装成功

python -c "from openvino.runtime import Core"

2 查看可用设备

下面是查看本地可用设备

from openvino.runtime import Core
core = Core()
devices = core.available_devices
for device in devices:device_name = core.get_property(device, "FULL_DEVICE_NAME")print(f"{device}: {device_name}")

输出:

CPU: Intel(R) Core(TM) i7-10870H CPU @ 2.20GHz
GPU.0: Intel(R) UHD Graphics (iGPU)
GPU.1: NVIDIA GeForce RTX 3060 Laptop GPU (dGPU)

这里有两个GPU,一个是集显,一个是独显。

3 模型的中间表示

在OpenVINO的使用过程中,经常可以听见一个词叫IR,它的全程叫Intermediate Representation,即模型的中间表示,主要包括.xml文件和.bin文件,前者用于描述网络拓扑(即网络结构),后者则是包含了网络中的权重和偏置的二进制数据文件,IR是OpenVINO中模型的专有格式。
由于模型的部署环境通常不会安装PyTorch、TensorFlow这些深度学习框架,因此在训练完成之后,一般是将模型导出为onnx文件,这样可以摆脱对框架和模型所属类的依赖。ONNX定义了一组与环境和平台无关的标准格式,为AI模型的互操作性提供了基础,使AI模型可以在不同框架和环境下交互使用。硬件和软件厂商可以基于ONNX标准优化模型性能,让所有兼容ONNX标准的框架受益,简单来说,ONNX就是模型转换的中间人。
在一些比较老的教程中,是拿到onnx文件后,将其转化为IR,然后OpenVINO再读取IR文件,并将其编译到硬件上面进行推理,这是之前OpenVINO推荐的部署流程,代码如下(只显示转化成IR的代码):

from openvino.tools import mo
from openvino.runtime import serialize	# pycharm可能会提示找不到serialize,但实际能执行,IDE有bugov_model = mo.convert_model(onnx_path)  # onnx_path是onnx文件的路径,ov_model是OpenVINO模型
serialize(ov_model, xml_path)           # xml_path是IR中xml文件的路径

serialize方法不但会生成xml文件,还会在相同目录下生成bin文件,mo.convert_model可以完成模型的压缩、剪枝、前处理、设置输入等操作,这个能力很加分,但本文的目的是了解OpenVINO的大致使用流程,关于模型的压缩剪枝等操作暂时不展开,可以看官方手册详细了解mo.conver_model的功能链接

如果在训练环境中安装了OpenVINO2023,那么可以在训练结束后,跳过ONNX,直接将模型转化为OpenVINO的IR,代码如下:

from openvino.tools import mo
from openvino.runtime import serializeov_model = mo.convert_model(net)        # net是PyTorch模型,ov_model是OpenVINO模型
serialize(ov_model, xml_path)

注意:将PyTorch模型直接转换成OpenVINO模型,这项功能仅仅是OpenVINO 2023.0 release才开始有的,在OpenVINO 2022之前都不支持,另外,因为这项功能比较新,因此并不是所有模型都能这么转,假如转换失败,还能老老实实先转ONNX,再转IR。

4 模型推理

得到IR之后(IR既可以在训练环境直接右PyTorch模型得到,也可以在部署环境中通过ONNX文件得到),将其读取到OpenVINO模型,然后编译到指定设备,就可以进行推理了,代码如下(省略了输入数据预处理的操作,比如图像缩放、数据压缩到0-1等):

from openvino.runtime import Core
# 创建推理核
core = Core()
# 读取IR文件
ov_model = core.read_model(model=ir_path)   # ir_path是IR中xml文件的路径
# 编译到指定设备
compiled_model = core.compile_model(ov_model, 'CPU')   #  'CPU'可以改成'GPU.0'、'GPU.1'或'AUTO'
# res是推理结果
res = compiled_model(input_tensor)[0]  

设备除了CPU之外,还可以是GPU.0或GPU.1,也可以让系统自动选择(AUTO),看自己的电脑上有什么设备,可以使用core.available_devices,详见第2节。

上面的流程是标准流程,实际上,core.read_model可以直接读onnx文件,这使得我们可以跳过IR那一步,代码如下:

from openvino.runtime import Core
core = Core()
# 读取onnx文件
ov_model = core.read_model(model=onnx_path)   # onnx_path是onnx文件的路径
# 编译到指定设备
compiled_model = core.compile_model(ov_model, 'CPU')    # 除了CPU,还可以
# res是推理结果
res = compiled_model(input_tensor)[0]

其实,也可以使用mo.convert_model将onnx模型转成OpenVINO模型后编译到指定设备,但这需要部署环境中有OpenVINO开发工具(即openvino.tools),而一般情况下,部署环境没这个,只有runtime(即openvino.runtime),所以这种方式用的不多。

5 总结

本文介绍了如何使用OpenVINO部署PyTorch模型,主要内容可以用下面几幅图表示
在这里插入图片描述
在这里插入图片描述
好了,至此,当我们得到一个PyTorch模型后,已经可以将其部署到OpenVINO上去了,当然,由于篇幅所限,还有很多细节没有展开,我们今天先把Pipeline打通,日后会具体介绍。

https://docs.openvino.ai/2023.0/notebooks/102-pytorch-to-openvino-with-output.html
https://docs.openvino.ai/2023.0/notebooks/102-pytorch-onnx-to-openvino-with-output.html
https://docs.openvino.ai/2023.0/openvino_docs_model_processing_introduction.html
https://mp.weixin.qq.com/s?__biz=MzU2NjU3OTc5NA==&mid=2247560125&idx=2&sn=001988bca941a9404ac8fe7a351b514d&chksm=fca9ec80cbde659689922250b3138e752cfccf50fde18f07016b7673bf1289bb8bd25bb4f636&scene=27

相关文章:

OpenVINO2023使用简介

1 下载安装 先在anaconda中创建一个虚拟环境,该环境的python版本为3.7,之所以使用python3.7,是因为我在3.9上安装过程中出现不少bug,后面新建了一个3.7的环境才解决,我不知道是否由于和我已有环境中某些包不兼容&…...

基于React实现无限滚动的日历详细教程,附源码【手写日历教程第二篇】

前言 最常见的日历大部分都是滚动去加载更多的月份,而不是让用户手动点击按钮切换日历月份。滚动加载的交互方式对于用户而言是更加丝滑和舒适的,没有明显的操作割裂感。 那么现在需要做一个这样的无限滚动的日历,前端开发者应该如何去思考…...

68、使用aws官方的demo和配置aws服务,进行视频流上传播放

基本思想:参考官方视频,进行了配置aws,测试了视频推流,rtsp和mp4格式的视频貌似有问题,待调研和解决 第一步:1) 进入aws的网站,然后进入ioT Core 2)先配置 Thing types & Thing,选择香港的节点,然后AWS ioT--->Manage---> Thing type 然后输入名字,创建Th…...

数据库

表 记录:行 字段(属性): 列 以行列的形式就组成了表(数据存储在表中) 关系数据库的表由记录组成,记录由字段组成,字段由字符或数字组成。它可以供各种用户共享, 具有最小冗余度和较高…...

深入了解fcntl函数:Linux系统编程中的文件控制

文章目录 概述介绍函数原型与参数 拓展:fcntl改文件属性总结 概述 摘要: fcntl函数是Linux系统编程中一个重要的函数,用于对文件描述符进行各种控制操作。本文将详细介绍fcntl函数的原型、各个参数的用法,以及阻塞和非阻塞模式切换的方法&am…...

汇川技术内推码

[庆祝]不一样的内推码[庆祝]:IVSM2R 投递了可以评论下名字,我会帮忙留意进度。 汇尔成川,共赴星海,欢迎加入,职等你来。 嵌入式软硬件,机器人算法,电机控制,通信软件,PLC…...

nacos服务器启动报错集合

报错1 Error creating bean with name ‘user‘: Unsatisfied dependency expressed through field ‘jwtTokenManage 开启鉴权之后,你可以自定义用于生成JWT令牌的密钥,application.properties中的配置信息为: ### Since 1.4.1, worked when…...

C语言_分支和循环语句(2)

文章目录 前言一、for 循环1.1语法1.2 for 语句的循环控制变量1.3 一些 for 循环的变种 二、do ... while()循环2.1 do 语句的语法2.2 do ... while 循环中的 break 和 continue2.3 练习1 **- 计算n的阶乘**2. - **在一个有序数组中查找具体的某个数字 n** 二分查找算法&#x…...

JMeter 接口自动化测试:从入门到精通的完全指南

JMeter 是一个开源的负载测试工具,它可以模拟多种协议和应用程序的负载,包括 HTTP、FTP、SMTP、JMS、SOAP 和 JDBC 等。在进行接口自动化测试时,使用 JMeter 可以帮助我们快速地构建测试用例,模拟多种场景,发现接口的性…...

【Java】集合List的toArray()方法及其重载

在Java中&#xff0c;集合&#xff08;List 接口的实现类&#xff09;提供了一个名为 toArray 的方法&#xff0c;用于将集合中的元素转换成数组。该方法有两个主要的重载形式&#xff0c;分别用于不同的情况。 toArray()重载方法1 <T> T[] toArray(T[] a)这个方法将集…...

Python学习笔记:Requests库安装、通过url下载文件

1.下载安装requests库 在pipy或者github下载&#xff0c;通常是个zip&#xff0c;解压缩后在路径输入cmd&#xff0c;并运行以下代码 Python setup.py install 安装完成后&#xff0c;输入python再输入import requests得到可以判断时候完成安装 2.通过url下载文件 使用的是u…...

git pull --rebase 用法

git pull --rebase git pull --rebase 是 Git 命令中的一个选项&#xff0c;它的作用是在从远程仓库拉取更新时使用 rebase 而不是默认的合并方式。使用这个命令会使您的提交历史更加整洁&#xff0c;因为它将您的本地提交在远程更新之前重新应用到新的提交之上。 这个命令的…...

react antd框架中的徽标获取数据对应状态的数量

实现思路&#xff1a;获取数量的思路是通过filter过滤符合数据来实现。 列表数组.filter(item > item.status 值).length; 例子&#xff1a;以下这个例子是判断data数组中的status中在职的数量。 data.filter((item) > item.status 在职).length 效果展示&#xff…...

【多线程】Thread类的用法

文章目录 1. Thread类的创建1.1 自己创建类继承Thread类1.2 实现Runnable接口1.3 使用匿名内部类创建Thread子类对象1.4 使用匿名内部类创建Runnable子类对象1.5 使用lambda创建 2. Thread常见的构造方法2.1 Thread()2.2 Thread(Runnable target)2.3 Thread(String name)2.4 Th…...

第八章 贪心算法 part03 1005.K次取反后最大化的数组和 134. 加油站 135. 分发糖果 (day34补)

本文章代码以c为例&#xff01; 一、力扣第1005题&#xff1a;K 次取反后最大化的数组和 题目: 给你一个整数数组 nums 和一个整数 k &#xff0c;按以下方法修改该数组&#xff1a; 选择某个下标 i 并将 nums[i] 替换为 -nums[i] 。 重复这个过程恰好 k 次。可以多次选择…...

Android Activity启动过程一:从Intent到Activity创建

关于作者&#xff1a;CSDN内容合伙人、技术专家&#xff0c; 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 &#xff0c;擅长java后端、移动开发、人工智能等&#xff0c;希望大家多多支持。 目录 一、概览二、应用内启动源码流程 (startActivity)2.1 startActivit…...

第9章:聚类

聚类任务 性能度量 距离度量 非度量距离 原型聚类 有很好的统计学上的意义&#xff0c;但是只能找到椭球形的聚类。 密度聚类 层次聚类...

程序员为什么要写bug,不能一次性写好吗?

仅仅听到“Bug”这个词就会让你作为一个开发人员感到畏缩。我们相信&#xff0c;优秀的程序员是那些编写无错误代码的人。随着一些开发人员强调要成为一名零错误程序员&#xff0c;我们进行了更深刻的思考&#xff0c;并发现事实的准确性。 所有制作的软件都应该没有错误。对此…...

Nginx反向代理其他服务

Nginx反向代理 嘿&#xff0c;你的网络遇到了限制&#xff0c;不能直接通过服务的端口进行访问&#xff1f;别担心&#xff0c;我们可以借助Nginx这个超级英雄来解决这个问题&#xff01;让我给你讲讲关于Nginx反向代理的故事吧。 首先&#xff0c;让我们明确一下反向代理的概…...

MQ 简介-RabbitMQ

一. MQ 简介 消息队列作为高并发系统的核心组件之一&#xff0c;能够帮助业务系统结构提升开发效率和系统 稳定性&#xff0c;消息队列主要具有以下特点&#xff1a; 削峰填谷:主要解决瞬时写压力大于应用服务能力导致消息丢失、系统奔溃等问题系统解耦:解决不同重要程度、不…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具&#xff0c;可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件&#xff0c;也不需要在线上传文件&#xff0c;保护您的隐私。 工具截图 主要特点 &#x1f680; 快速转换&#xff1a;本地转换&#xff0c;无需等待上…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...

智能职业发展系统:AI驱动的职业规划平台技术解析

智能职业发展系统&#xff1a;AI驱动的职业规划平台技术解析 引言&#xff1a;数字时代的职业革命 在当今瞬息万变的就业市场中&#xff0c;传统的职业规划方法已无法满足个人和企业的需求。据统计&#xff0c;全球每年有超过2亿人面临职业转型困境&#xff0c;而企业也因此遭…...

字符串哈希+KMP

P10468 兔子与兔子 #include<bits/stdc.h> using namespace std; typedef unsigned long long ull; const int N 1000010; ull a[N], pw[N]; int n; ull gethash(int l, int r){return a[r] - a[l - 1] * pw[r - l 1]; } signed main(){ios::sync_with_stdio(false), …...