当前位置: 首页 > news >正文

第62步 深度学习图像识别:多分类建模(Pytorch)

基于WIN10的64位系统演示

一、写在前面

上期我们基于TensorFlow环境做了图像识别的多分类任务建模。

本期以健康组、肺结核组、COVID-19组、细菌性(病毒性)肺炎组为数据集,基于Pytorch环境,构建SqueezeNet多分类模型,因为它建模速度快。

同样,基于GPT-4辅助编程,这次改写过程就不展示了。

二、多分类建模实战

使用胸片的数据集:肺结核病人和健康人的胸片的识别。其中,健康人900张,肺结核病人700张,COVID-19病人549张、细菌性(病毒性)肺炎组900张,分别存入单独的文件夹中。

(a)直接分享代码

######################################导入包###################################
# 导入必要的包
import copy
import torch
import torchvision
import torchvision.transforms as transforms
from torchvision import models
from torch.utils.data import DataLoader
from torch import optim, nn
from torch.optim import lr_scheduler
import os
import matplotlib.pyplot as plt
import warnings
import numpy as npwarnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False# 设置GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")################################导入数据集#####################################
import torch
from torchvision import datasets, transforms
import os# 数据集路径
data_dir = "./MTB-1"# 图像的大小
img_height = 100
img_width = 100# 数据预处理
data_transforms = {'train': transforms.Compose([transforms.RandomResizedCrop(img_height),transforms.RandomHorizontalFlip(),transforms.RandomVerticalFlip(),transforms.RandomRotation(0.2),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),'val': transforms.Compose([transforms.Resize((img_height, img_width)),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
}# 加载数据集
full_dataset = datasets.ImageFolder(data_dir)# 获取数据集的大小
full_size = len(full_dataset)
train_size = int(0.7 * full_size)  # 假设训练集占70%
val_size = full_size - train_size  # 验证集的大小# 随机分割数据集
torch.manual_seed(0)  # 设置随机种子以确保结果可重复
train_dataset, val_dataset = torch.utils.data.random_split(full_dataset, [train_size, val_size])# 将数据增强应用到训练集
train_dataset.dataset.transform = data_transforms['train']# 创建数据加载器
batch_size = 32
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=4)dataloaders = {'train': train_dataloader, 'val': val_dataloader}
dataset_sizes = {'train': len(train_dataset), 'val': len(val_dataset)}
class_names = full_dataset.classes###############################定义SqueezeNet模型################################
# 定义SqueezeNet模型
model = models.squeezenet1_1(pretrained=True)  # 这里以SqueezeNet 1.1版本为例
num_ftrs = model.classifier[1].in_channels# 根据分类任务修改最后一层
model.classifier[1] = nn.Conv2d(num_ftrs, len(class_names), kernel_size=(1,1))# 修改模型最后的输出层为我们需要的类别数
model.num_classes = len(class_names)model = model.to(device)# 打印模型摘要
print(model)#############################编译模型#########################################
# 定义损失函数
criterion = nn.CrossEntropyLoss()# 定义优化器
optimizer = optim.Adam(model.parameters())# 定义学习率调度器
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)# 开始训练模型
num_epochs = 50# 初始化记录器
train_loss_history = []
train_acc_history = []
val_loss_history = []
val_acc_history = []for epoch in range(num_epochs):print('Epoch {}/{}'.format(epoch, num_epochs - 1))print('-' * 10)# 每个epoch都有一个训练和验证阶段for phase in ['train', 'val']:if phase == 'train':model.train()  # 设置模型为训练模式else:model.eval()   # 设置模型为评估模式running_loss = 0.0running_corrects = 0# 遍历数据for inputs, labels in dataloaders[phase]:inputs = inputs.to(device)labels = labels.to(device)# 零参数梯度optimizer.zero_grad()# 前向with torch.set_grad_enabled(phase == 'train'):outputs = model(inputs)_, preds = torch.max(outputs, 1)loss = criterion(outputs, labels)# 只在训练模式下进行反向和优化if phase == 'train':loss.backward()optimizer.step()# 统计running_loss += loss.item() * inputs.size(0)running_corrects += torch.sum(preds == labels.data)epoch_loss = running_loss / dataset_sizes[phase]epoch_acc = (running_corrects.double() / dataset_sizes[phase]).item()# 记录每个epoch的loss和accuracyif phase == 'train':train_loss_history.append(epoch_loss)train_acc_history.append(epoch_acc)else:val_loss_history.append(epoch_loss)val_acc_history.append(epoch_acc)print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))print()# 保存模型
torch.save(model.state_dict(), 'model.pth')# 加载最佳模型权重
#model.load_state_dict(best_model_wts)
#torch.save(model, 'shufflenet_best_model.pth')
#print("The trained model has been saved.")
###########################Accuracy和Loss可视化#################################
epoch = range(1, len(train_loss_history)+1)fig, ax = plt.subplots(1, 2, figsize=(10,4))
ax[0].plot(epoch, train_loss_history, label='Train loss')
ax[0].plot(epoch, val_loss_history, label='Validation loss')
ax[0].set_xlabel('Epochs')
ax[0].set_ylabel('Loss')
ax[0].legend()ax[1].plot(epoch, train_acc_history, label='Train acc')
ax[1].plot(epoch, val_acc_history, label='Validation acc')
ax[1].set_xlabel('Epochs')
ax[1].set_ylabel('Accuracy')
ax[1].legend()#plt.savefig("loss-acc.pdf", dpi=300,format="pdf")####################################混淆矩阵可视化#############################
from sklearn.metrics import classification_report, confusion_matrix
import math
import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib.pyplot import imshow# 定义一个绘制混淆矩阵图的函数
def plot_cm(labels, predictions):# 生成混淆矩阵conf_numpy = confusion_matrix(labels, predictions)# 将矩阵转化为 DataFrameconf_df = pd.DataFrame(conf_numpy, index=class_names ,columns=class_names)  plt.figure(figsize=(8,7))sns.heatmap(conf_df, annot=True, fmt="d", cmap="BuPu")plt.title('Confusion matrix',fontsize=15)plt.ylabel('Actual value',fontsize=14)plt.xlabel('Predictive value',fontsize=14)def evaluate_model(model, dataloader, device):model.eval()   # 设置模型为评估模式true_labels = []pred_labels = []# 遍历数据for inputs, labels in dataloader:inputs = inputs.to(device)labels = labels.to(device)# 前向with torch.no_grad():outputs = model(inputs)_, preds = torch.max(outputs, 1)true_labels.extend(labels.cpu().numpy())pred_labels.extend(preds.cpu().numpy())return true_labels, pred_labels# 获取预测和真实标签
true_labels, pred_labels = evaluate_model(model, dataloaders['val'], device)# 计算混淆矩阵
cm_val = confusion_matrix(true_labels, pred_labels)
a_val = cm_val[0,0]
b_val = cm_val[0,1]
c_val = cm_val[1,0]
d_val = cm_val[1,1]# 计算各种性能指标
acc_val = (a_val+d_val)/(a_val+b_val+c_val+d_val)  # 准确率
error_rate_val = 1 - acc_val  # 错误率
sen_val = d_val/(d_val+c_val)  # 灵敏度
sep_val = a_val/(a_val+b_val)  # 特异度
precision_val = d_val/(b_val+d_val)  # 精确度
F1_val = (2*precision_val*sen_val)/(precision_val+sen_val)  # F1值
MCC_val = (d_val*a_val-b_val*c_val) / (np.sqrt((d_val+b_val)*(d_val+c_val)*(a_val+b_val)*(a_val+c_val)))  # 马修斯相关系数# 打印出性能指标
print("验证集的灵敏度为:", sen_val, "验证集的特异度为:", sep_val,"验证集的准确率为:", acc_val, "验证集的错误率为:", error_rate_val,"验证集的精确度为:", precision_val, "验证集的F1为:", F1_val,"验证集的MCC为:", MCC_val)# 绘制混淆矩阵
plot_cm(true_labels, pred_labels)# 获取预测和真实标签
train_true_labels, train_pred_labels = evaluate_model(model, dataloaders['train'], device)
# 计算混淆矩阵
cm_train = confusion_matrix(train_true_labels, train_pred_labels)  
a_train = cm_train[0,0]
b_train = cm_train[0,1]
c_train = cm_train[1,0]
d_train = cm_train[1,1]
acc_train = (a_train+d_train)/(a_train+b_train+c_train+d_train)
error_rate_train = 1 - acc_train
sen_train = d_train/(d_train+c_train)
sep_train = a_train/(a_train+b_train)
precision_train = d_train/(b_train+d_train)
F1_train = (2*precision_train*sen_train)/(precision_train+sen_train)
MCC_train = (d_train*a_train-b_train*c_train) / (math.sqrt((d_train+b_train)*(d_train+c_train)*(a_train+b_train)*(a_train+c_train))) 
print("训练集的灵敏度为:",sen_train, "训练集的特异度为:",sep_train,"训练集的准确率为:",acc_train, "训练集的错误率为:",error_rate_train,"训练集的精确度为:",precision_train, "训练集的F1为:",F1_train,"训练集的MCC为:",MCC_train)# 绘制混淆矩阵
plot_cm(train_true_labels, train_pred_labels)################################模型性能参数计算################################
from sklearn import metricsdef test_accuracy_report(model, dataloader, device):true_labels, pred_labels = evaluate_model(model, dataloader, device)print(metrics.classification_report(true_labels, pred_labels, target_names=class_names)) test_accuracy_report(model, dataloaders['val'], device)def train_accuracy_report(model, dataloader, device):true_labels, pred_labels = evaluate_model(model, dataloader, device)print(metrics.classification_report(true_labels, pred_labels, target_names=class_names)) train_accuracy_report(model, dataloaders['train'], device)################################AUC曲线绘制####################################
from sklearn import metrics
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.pyplot import imshow
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
import pandas as pd
import math
from sklearn.metrics import roc_auc_score, auc
from sklearn.preprocessing import LabelBinarizerdef multiclass_roc_auc_score(y_test, y_pred, average="macro"):# 判断 y_test 是否需要进行标签二值化if len(np.unique(y_test)) > 2:  # 假设 y_test 是类别标签,且类别数大于 2lb = LabelBinarizer()lb.fit(y_test)y_test = lb.transform(y_test)return roc_auc_score(y_test, y_pred, average=average)def plot_roc(name, labels, predictions, **kwargs):lb = LabelBinarizer()labels = lb.fit_transform(labels)  # one-hot 编码# predictions 不需要进行标签二值化# 计算ROC曲线和AUC值fpr = dict()tpr = dict()roc_auc = dict()class_num = len(class_names)for i in range(class_num):  # class_num是类别数目fpr[i], tpr[i], _ = metrics.roc_curve(labels[:, i], predictions[:, i])roc_auc[i] = metrics.auc(fpr[i], tpr[i])for i in range(class_num):plt.plot(fpr[i], tpr[i], label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc[i]))plt.plot([0, 1], [0, 1], 'k--')plt.xlim([0.0, 1.0])plt.ylim([0.0, 1.05])plt.xlabel('False Positive Rate')plt.ylabel('True Positive Rate')plt.title('Receiver operating characteristic example')plt.legend(loc="lower right")plt.show()# 确保模型处于评估模式
model.eval()def evaluate_model_pre(model, data_loader, device):model.eval()predictions = []labels = []with torch.no_grad():for inputs, targets in data_loader:inputs = inputs.to(device)targets = targets.to(device)outputs = model(inputs)# 使用 softmax 函数,转换成概率值prob_outputs = torch.nn.functional.softmax(outputs, dim=1)predictions.append(prob_outputs.detach().cpu().numpy())labels.append(targets.detach().cpu().numpy())return np.concatenate(predictions, axis=0), np.concatenate(labels, axis=0)val_pre_auc, val_label_auc = evaluate_model_pre(model, dataloaders['val'], device)
train_pre_auc, train_label_auc = evaluate_model_pre(model, dataloaders['train'], device)auc_score_val = multiclass_roc_auc_score(val_label_auc, val_pre_auc)
auc_score_train = multiclass_roc_auc_score(train_label_auc, train_pre_auc)plot_roc('validation AUC: {0:.4f}'.format(auc_score_val), val_label_auc, val_pre_auc, color="red", linestyle='--')
plot_roc('training AUC: {0:.4f}'.format(auc_score_train), train_label_auc, train_pre_auc, color="blue", linestyle='--')print("训练集的AUC值为:",auc_score_train, "验证集的AUC值为:",auc_score_val)

(b)输出结果:学习曲线

 (c)输出结果:混淆矩阵

 (d)输出结果:性能参数

 (e)输出结果:ROC曲线

三、数据

链接:https://pan.baidu.com/s/1rqu15KAUxjNBaWYfEmPwgQ?pwd=xfyn

提取码:xfyn

 

相关文章:

第62步 深度学习图像识别:多分类建模(Pytorch)

基于WIN10的64位系统演示 一、写在前面 上期我们基于TensorFlow环境做了图像识别的多分类任务建模。 本期以健康组、肺结核组、COVID-19组、细菌性(病毒性)肺炎组为数据集,基于Pytorch环境,构建SqueezeNet多分类模型&#xff0…...

GPT带我学-设计模式-适配器模式

1 什么是适配器设计模式 适配器设计模式是一种结构性设计模式,用于在不兼容的接口之间进行转换。它允许将一个类的接口转换成客户端所期望的接口。 适配器模式包含以下几个角色: 目标接口(Target):定义客户端所期望…...

Pyecharts教程(七):使用pyecharts创建堆叠柱状图的示例

Pyecharts教程(七):使用pyecharts创建堆叠柱状图的示例 作者:安静到无声 个人主页 目录 Pyecharts教程(七):使用pyecharts创建堆叠柱状图的示例完整代码推荐专栏在数据可视化中,柱状图是一种常见的图表类型,它可以清晰地展示各类别之间的比较关系。然而,如果我们想要在同…...

C++中的强制转换的常用类型及应用场景详解

C中的强制转换的常用类型及应用场景详解 文章目录 C中的强制转换的常用类型及应用场景详解一、静态转换(static_cast)二、动态转换(dynamic_cast)三、常量转换(const_cast)四、重新解释转换(rei…...

ubuntu调整时区

ubuntu在新装系统的时候,所用的时区不一定是8的时区,需要设置一下,否则执行cron等定时任务的时候,时间就会不对 查看当前系统的时区 date -R tzselect 选择时区,但是没用 ,作用可能就是 选择时区 设置时区:…...

mybatis:动态sql【2】+转义符+缓存

目录 一、动态sql 1.set、if 2.foreach 二、转义符 三、缓存cache 1. 一级缓存 2. 二级缓存 一、动态sql 1.set、if 在update语句中使用set标签&#xff0c;动态更新set后的sql语句&#xff0c;&#xff0c;if作为判断条件。 <update id"updateStuent" pa…...

2021年09月 C/C++(五级)真题解析#中国电子学会#全国青少年软件编程等级考试

第1题:抓牛 农夫知道一头牛的位置,想要抓住它。农夫和牛都位于数轴上,农夫起始位于点N(0<=N<=100000),牛位于点K(0<=K<=100000)。农夫有两种移动方式: 1、从X移动到X-1或X+1,每次移动花费一分钟 2、从X移动到2*X,每次移动花费一分钟 假设牛没有意识到农夫的…...

Ansible学习笔记1

公司的服务器越来越多&#xff0c;维护一些简单的事情都会变得很繁琐。用Shell脚本来管理少量服务器效率还行&#xff0c;服务器多了&#xff0c;Shell脚本无法实现高效率运维。这种情况下&#xff0c;我们需要引入自动化运维工具&#xff0c;对多台服务器实现高效运维。 配置服…...

解决centos离线安装cmake找不到OpenSSL问题

安装方法&#xff1a;见另外一篇文章 https://blog.csdn.net/zhongxj183/article/details/118488629 按照文章下载了离线gcc 和OpenSSL&#xff0c;以及在cmake官网下载了最新版 cmake-3.27.4.tar.gz 顺利安装gcc 和OpenSSL 但执行编译cmake时&#xff0c;报错找不到OpenSSL…...

Java 中数据结构ArrayList的用法

Java ArrayList ArrayList 类是一个可以动态修改的数组&#xff0c;与普通数组的区别就是它是没有固定大小的限制&#xff0c;我们可以添加或删除元素。 方法集合样例代码 import java.util.*;public class list_set_iterator {public static void main(String[] args) {Lis…...

UDP 多播(组播)

前言&#xff08;了解分类的IP地址&#xff09; 1.组播&#xff08;多播&#xff09; 单播地址标识单个IP接口&#xff0c;广播地址标识某个子网的所有IP接口&#xff0c;多播地址标识一组IP接口。单播和广播是寻址方案的两个极端&#xff08;要么单个要么全部&#xff09;&am…...

分布式环境集成JWT(Java Web Token)

目录 一&#xff0c;说明&#xff1a;二&#xff0c;Token、Session和Cookie比较三&#xff0c;Spring Boot项目集成JWT1&#xff0c;引入依赖2&#xff0c;Token工具类3&#xff0c;定义拦截器4&#xff0c;注册拦截器5&#xff0c;编写登录代码6&#xff0c;测试 四&#xff…...

Python实战之数据表提取和下载自动化

在网络爬虫领域&#xff0c;动态渲染类型页面的数据提取和下载自动化是一个常见的挑战。本文将介绍如何利用Pyppeteer库完成这一任务&#xff0c;帮助您轻松地提取动态渲染页面中的数据表并实现下载自动化。 一、环境准备 首先&#xff0c;确保您已经安装了Python环境。接下来…...

Midjourney学习(三)6个高级应用

使用Remix Mode在原图片的基础上进行二次创作 通过prompt得到大图之后&#xff0c;点击Make Variations按钮&#xff0c;输入Remix Prompt&#xff0c;即可得到意想不到的效果&#xff01; 局部内容重绘 通过局部重绘可以实现对画面内容更加精细化的控制&#xff0c;同样也是需…...

C语言:指针类型的意义

1.指针的类型决定了解引用时访问几个字节 2.指针的类型决定了指针1、-1跳过几个字节 一、指针的类型决定指针解引用时访问几个字节 例如 int 型指针解引用时访问4个字节 char 型指针解引用时访问1个字节 详解代码如下&#xff1a; int b 0x11223344&#xff08;十六进制&…...

如何将 PDF 转换为 Word:前 5 个应用程序

必须将 PDF 转换为 Word 才能对其进行编辑和自定义。所以这里有 5 种很棒的方法 PDF 文件被广泛使用&#xff0c;因为它非常稳定且难以更改。这在处理法律合同、财务文件和推荐信等重要文件时尤其重要。但是&#xff0c;有时您可能需要编辑 PDF 文件。最好的方法是使用应用程序…...

AP5192 DC-DC降压恒流LED汽车头灯摩托车电动车大灯电源驱动

AP5192是一款PWM工作模式,高效率、外围简单、 内置功率MOS管&#xff0c;适用于4.5-100V输入的高精度 降压LED恒流驱动芯片。最大电流1.5A。 AP5192可实现线性调光和PWM调光&#xff0c;线性调光 脚有效电压范围0.55-2.6V. AP5192 工作频率可以通过RT 外部电阻编程 来设定&…...

Python Opencv实践 - Canny边缘检测

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_GRAYSCALE) print(img.shape)#图像Canny边缘检测 #cv.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradien…...

Python编程练习与解答 练习119:低于和高于平均水平

编写一个程序&#xff0c;从用户处读取数字&#xff0c;直到用户输入空行。程序应该显示用户输入的所有值的平均值。然后所有程序应该显示所有平均值的值&#xff0c;然后显示所有平均值&#xff08;若有&#xff09;&#xff0c;最后显示所有高于平均值的值。再每个值列表之前…...

vue中的nextTick的作用

vue里面&#xff0c;常用的事件onMounted里&#xff0c;总喜欢用一个nextTick&#xff1a; onMounted(() > {nextTick(() > {init();}); });这个东西有啥用呢&#xff1f;我总搞不懂。 今天我忽然有点明白了。这是一个跟前面语句有关的方法。意思是&#xff0c;等前面的…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器

拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件&#xff1a; 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...

tomcat指定使用的jdk版本

说明 有时候需要对tomcat配置指定的jdk版本号&#xff0c;此时&#xff0c;我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...

C++实现分布式网络通信框架RPC(2)——rpc发布端

有了上篇文章的项目的基本知识的了解&#xff0c;现在我们就开始构建项目。 目录 一、构建工程目录 二、本地服务发布成RPC服务 2.1理解RPC发布 2.2实现 三、Mprpc框架的基础类设计 3.1框架的初始化类 MprpcApplication 代码实现 3.2读取配置文件类 MprpcConfig 代码实现…...

2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案

一、延迟敏感行业面临的DDoS攻击新挑战 2025年&#xff0c;金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征&#xff1a; AI驱动的自适应攻击&#xff1a;攻击流量模拟真实用户行为&#xff0c;差异率低至0.5%&#xff0c;传统规则引…...

window 显示驱动开发-如何查询视频处理功能(三)

​D3DDDICAPS_GETPROCAMPRANGE请求类型 UMD 返回指向 DXVADDI_VALUERANGE 结构的指针&#xff0c;该结构包含特定视频流上特定 ProcAmp 控件属性允许的值范围。 Direct3D 运行时在D3DDDIARG_GETCAPS的 pInfo 成员指向的变量中为特定视频流的 ProcAmp 控件属性指定DXVADDI_QUER…...