苏宁基于 AI 和图技术的智能监控体系的建设
汤泳,苏宁科技集团智能监控与运维产研中心总监,中国商业联合会智库顾问,致力于海量数据分析、基于深度学习的时间序列分析与预测、自然语言处理和图神经网络的研究。在应用实践中,通过基于 AI 的方式不断完善智能监控体系的建设,对日常和大促提供稳定性保障。
概述
知识图谱有较强的知识表达能力、直观的信息呈现能力和较好的推理可解释性,因此知识图谱在推荐系统、问答系统、搜索引擎、医疗健康、生物制药等领域有着广泛的应用。运维知识图谱构建相对于其他领域的知识图谱构建而言,具有天然的优势,网络设备固有的拓扑结构、系统应用的调用关系可以快速的构成软硬件知识图谱中的实体和关系。历史的告警数据蕴含着大量的相关、因果关系,使用因果发现算法,也可以有效的构建告警知识图谱。基于知识图谱上的权重进行路径搜索,可以给出根因的传播路径,便于运维人员快速的做出干预决策。
苏宁通过 CMDB、调用链等数据构建软硬件知识图谱,在此基础上通过历史告警数据构建告警知识图谱,并最终应用知识图谱进行告警收敛和根因定位。本文主要包括运维知识图谱构建、知识图谱存储、告警收敛及根因定位等内容。
痛点及产品对策演进
痛点
- 苏宁内部系统和服务的复杂性:
6000+ 系统,数量还在增加;
系统间调用方式复杂: 大部分使用 RSF,也有 HTTP、HESSIAN 等;
苏宁业务的复杂: 既有线上新业务又有线下老业务,这些业务系统之间会有大量的关联。
- 基础环境的复杂性:
多数据中心,每个数据中心会划分多个逻辑机房和部署环境;
服务器规模 30w+,例如,缓存服务器就有可能有上千台服务器;
设备复杂性: 多品牌的交换机,路由器,负载均衡,OpenStack, KVM, k8s 下 docker,swarm 下的 docker 等。
基础设施的复杂性导致每天平均产生 10w+ 的告警事件,峰值可达到 20w+ / 天。面对海量的运维监控数据,系统和指标间关联关系越来越复杂,一个节点出现故障,极易引发告警风暴,波及更广的范围,导致定位问题费时费力。此时,单纯依靠人肉和经验分析,越来越难以为继。迫切需要一个工具,可以辅助我们分析系统和指标间关联关系,可视化展示告警的传播路径和影响范围等。
产品对策演进
针对上述痛点,我们采用领域知识结合 AI 的方法对告警进行收敛,以缓解告 警风暴。此外,为便于一线运维人员快速的作出干预决策,我们同时对告警的传播路径和影响范围进行分析。
- 基于交叉熵的告警聚类(1.0 版本)
按照告警的场景和规则,利用交叉熵对告警信息进行聚类,实现告警的收敛。 借鉴 moogsoft 的思想,将告警聚类结果生成 situation,同一个 situation 中包含同场景、有关联的告警。
缺点:
-
收敛效果有限,该方法只能减少 30% 左右的告警,无法有效解决告警风暴问题;
-
无法提供根告警以及根因链路
-
弱解释性
-
无法解决告警的根因问题。
- 基于 GRANO 算法的根因定位(2.0 版本)
根因定位是在告警收敛的基础上进行的,采用 GRANO[2] 算法,基于告警收敛结果生成 situation,计算 situation 中每个告警节点的得分,然后排序来确定根因。
缺点:
- 这种方法的缺点是不会给出一条完整的根因链路,因此根因的可解释性不强。
- 基于运维知识图谱的告警收敛和根因定位(3.0 版本)
包括全局视角下的软硬件知识图谱和告警知识图谱,利用 NLP 技术对告警文 本信息进行分类,然后将告警收敛到软硬件知识图谱的相关节点上,再结合具 有因果关系的告警知识图谱,得出一条 “A –> B –> C –> D”的根因链路。
优点:
- 由于结合了领域相关知识,该方法收敛效果更好,而且提供了一条完整的根因链路,所以解释性更强,可以更好的为 SRE / 运维人员提供指引。
思路与架构
分层建设思路
流程架构
运维知识图谱构建
4.1 软硬件知识图谱构建
软硬件知识图谱是以全局的视角展示系统内各应用、软件、虚拟机、物理机间 的内在逻辑,系统间的调用关系,网络设备的物理连接关系。图谱中的节点包 括系统、DU(部署单元)、group(主机实例组)、软件、虚拟机、物理机、接入交 换机、核心交换机、汇聚交换机、路由器等。关系包括 constitute(构成)、call (调用)、logical(逻辑连接)、cluster(汇聚)、ship(承载)、host(宿主)、connect(物 理连接)等。软硬件知识图谱的原型如下:
软硬件知识图谱构建的数据源主要有 CMDB 数据、调用链数据和物理设备网络连接数据。实践中首先基于离线数据初始化软硬件知识图谱,随着业务的变化和拓展会出现旧系统的下线和新系统的上线,然后根据变化定时或定期更新软硬件知识图谱。
4.1.1 CMDB 数据构建流程
通过 CMDB 数据可以构建 HOST->VM->SOFTWARE->GROUP 及 GROUP (WildFly) -> GROUP(Nginx)的关系图谱。
4.1.2 调用链 / 物理设备网络连接数据
调用链数据主要用于获取 DU 间调用关系、系统间调用关系、DU / IP 映射关系、中间件间的逻辑连接关系等,数据主要通过内部的一些 API 接口获取。
物理设备主要包括物理机、交换机、路由器等,数据主要通过运维平台获取。
4.1.3 合并图谱
将前面得到的 CMDB、调用链和物理设备图谱通过 networkx 合并,然后存入图数据库 NebulaGraph 中,最终得到的单系统和系统间图谱分别如下(NebulaGraph Studio 可视化呈现):
其中蓝色节点为系统,浅蓝色节点为 DU,绿色节点为 group,红色节点为软件,橙色节点为虚拟机,深蓝色节点为物理机,黄色节点为接入交换机,淡黄色节点为汇聚交换机。
NebulaGraph Studio: https://github.com/vesoft-inc/nebula-web-docker
4.2 告警知识图谱构建
4.2.1 告警数据分类
原来的告警分类采用是交叉熵方法: 告警信息、分词、统计词频、计算与各类别的相似度(交叉熵),若相似度大于阈值,选择相似度最高的那一类归到该类,若相似度均小于阈值,则新增一个类别。
这样做的缺点:
-
无法控制分类的数量,比如如果阈值设的较大,就会出现好多类别;如果设置的较小,很多告警又会归到一类。
-
无法控制类别的具体含义,分类依赖于交叉熵的计算结果以及阈值的设置,无法确切知道每个类别的真正含义。
上述这种方法无法满足我们构建因果图的需要。
为了让构建的因果图有更好的说服力和可解释性,我们需要对各种告警信息进行人工分类,比如有的告警是对应于基础设施,比如网卡流量,cpu 利用率,
有的告警对应于具体软件,比如 mysql 延迟,wildfly 无法获取连接。这样,每个告警类别都有自己明确的含义。在此基础上构建的因果图才是有意义的。
我们首先对 zabbix 六个月全量告警信息进行了整理,将所有告警分为了 183 类,然后使用有监督的方法,训练分类模型。这样新来的告警信息也可以按照 我们预先设定的类别进行分类。
分类模型我们使用的是自然语言处理方法,先对告警信息进行分词,然后计算词向量,然后将词向量作为输入训练模型。我们分别训练的 cnn 和 bow(ngr ams)分类模型,整体而言,分类准确率都很高,能满足我们的要求。其中 cnn 效果好一点,但是预测时间也会比 bow 耗时长一点。
• cnn 模型(modelcnn20e__0813):
- -------------- train_list
predict total time= 12.386132
总告警数量: 20620 错误个数: 0 准确率= 1.0
- -------------- test_list
predict total time= 1.452978
总告警数量: 3620 错误个数: 0 准确率= 1.0
- -------------- 全部六个月告警信息
总告警数量: 733637 预测错误数量: 9 准确率: 0.99998
• n bow 模型(model__bow__20e__0813)
- -------------- train_list
predict total time= 1.687823
总告警数量: 20620 错误个数: 1 准确率= 0.999952
- -------------- test_list
predict total time= 0.272725
总告警数量: 3620 错误个数: 1 准确率= 0.999724
- -------------- 全部六个月告警信息
总告警数量: 733637 预测错误数量: 12 准确率: 0.99998
4.2.2 因果节点选取
因果节点不具体指一个物理机或虚拟机 IP 上的告警,而是对所有告警类型的一个抽象总结,目前包含三层(结构如下): 物理机层面的告警、虚拟机层面 的告警、软件层面的告警。比如: 任何一台物理机上的宕机告警都归类于因果图上【物理机-宕机】节点。
经过告警数据分类,我们初步将所有的告警分类都作为因果节点,在经过因果算法输出因果边并人工筛查确认之后,选取最终的因果节点。
4.2.3 构建因果发现样本
基于 6 个月的 zabbix 告警数据(如上图,共 781288 条告警)构建样本。
构建目标:
根据告警分类,已将每一条告警记录归类为一种告警类型(告警类型:物理机- xx 告警、虚拟机-xx 告警、软件-xx 告警)。以每条虚拟机告警记录为中心,给定一个告警时间切片(1min、2min 等),寻找每条虚拟机告警时间切片内的相关告警记录(相关告警包括: 该虚拟机隶属的物理机上的告警,同隶属该台物理机上的其他虚拟机上的告警)集合作为一个因果发现样本。
举例说明:
下面是一台虚拟机在某一个时间点的告警,以该告警构建样本。
给定时间切片为 1 分钟,以上面一条虚拟机上的告警为例,寻找 1 分钟内与该虚拟机相关的物理机和虚拟机上的告警,所有告警如下图所示为一个因果样本。
最终转置每一个样本,将告警类型作为列名,集合所有的样本,若发生告警记为 1,不发生记为 0,生成最终的因果发现样本(因果算法的输入),如下所示:
4.2.4 因果算法
采用已有的因果发现算法工具包:CausalDiscoveryToolbox,其中包含的算法有: PC、GES、CCDr、LiNGAM 等。
PC:是因果发现中最著名的基于分数的方法,该算法对变量和变量集的进行 条件测试,以获得可能的因果边。
GES:Greedy Equivalence Search algorithm(贪婪干涉等价搜索算法),是一种 基于分数的贝叶斯算法,通过在数据上计算似然分数最小化来启发式地搜索 图,以获得因果边。
CCDr: Concave penalized Coordinate Descent with reparametrization(参数化的凹点惩罚坐标下降法), 这是一种基于分数的用来学习贝叶斯网络的快速结构学习算法,该方法使用稀疏正则化和块循环坐标下降。
目标:
采用多种因果发现算法训练告警数据,基于各个算法输出的因果边再结合人工审查筛选确定最终的因果边(包含因果节点),边确定了,相应的因果节点也确定了。
举例说明:
以 PC 和 GES 两个算法为例:
PC 算法输出的可能因果节点和边:
GES 算法输出的可能因果节点和边:
两个算法都发现了【host-服务器宕机】导致【vm-服务器宕机】和【host-服务 器宕机】导致【software-网页访问失败】等相同的因果边,经人工确认物理机宕机确实会导致其对应的虚拟机宕机和服务器上的软件访问失败,所以确定这两条边为因果边。
4.2.5 因果边的权重计算
因果边的权重采用条件概率计算,即:基于因果发现样本数据和因果发现算法给出的因果边(包括两个因果节点),【因节点发生告警的条件下果节点发生告警的次数】与【因节点总共发生的告警次数】的比值作为该因果边的权重。
举例:
截取部分的因果边及其权重:【host-服务器宕机】导致【vm-服务器宕机】的因果边权重为 0.99。
4.2.6 构建告警知识图谱
经过【告警的分类】–>【构建因果发现样本】–>【因果算法发现因果边】–> 【因果边权重计算】,最终生成所有的因果边及其权重。
基于 zabbix 的 781288 条告警数据,最终确定了 213 条因果边(如上图所 示),根据 213 条因果边的指向和权重,构建告警知识图谱(部分结构如下图所示),并将告警知识图谱写入图数据库以便持久化读取,后续的根因定位需从图数据库读取所构建的告警知识图谱进行分析。
知识图谱存储
5.1 图数据库引入
图数据库是以图数据结构存储和查询数据,图包含节点和边。构建运维知识图谱做根因告警分析等场景时,为了实时查询知识图谱,我们引入了图数据库,并将知识图谱持久化存储到图数据库中。另外,引入图数据库还有以下优势:
(1) 图数据库在处理关联数据时的速度快,而关系型数据库在处理反向查询以及多层次关系查询的时候通常开销较大,无法满足我们的要求。
(2) 图数据库可解释性好。图数据库基于节点和边,以一种直观的方式表示这些关系,具有天然可解释性。
(3) 图数据库查询语句表达性好,比如查询一跳,两跳数据,不需要像关系型数据库那样做复杂的表关联。
(4) 图数据库更灵活。图这种通用结构可以对各种场景进行建模,如社交网络、道路系统等。不管有什么新的数据需要存储,都只需要考虑节点属性和边属性。不像关系型数据库中,需要更新表结构,还要考虑和其他表的关联关系 等。
5.2 图数据库选型
Neo4j 开源版本不支持分布式,无法满足我们对多副本的需求; ArangoDB 是 多模态数据库,支持 graph, document, key/value 和 search,支持分布式部署,查询速度快; NebulaGraph 一款是国产的开源图数据库,支持分布式部署且部署方式比 ArangoDB 更轻便,查询速度快,腾讯、京东等公司内部也在使用。
在充分比较了以上图数据库的性能,以及社区的活跃性以及开放性后,我们最终选择 NebulaGraph。针对上述的三个图数据库,我们做了一个详细的性能 Benchmark 对比: https://discuss.nebula-graph.com.cn/t/topic/1466
告警收敛及根因定位
6.1 流程
针对告警数据的收敛和根因定位,可以分为以下主要几个步骤。
多模态数据库
设置时间切片粒度: 实时获取时间切片内(1min、5min 等)的告警数 据;
告警分类: 针对原始的告警数据,结合具体的告警信息和监控项等信息,根据训练好的分类模型对原始的告警数据从 HOST、VM、SOFTW ARE 三个方面进行分类,例如: vm_网卡流量大、host_磁盘使用率过高、software_网页访问失败等。
告警收敛:查询软硬件知识图谱将告警以系统为单位进行收敛,收敛格式如下,格式如下:
系统 1: {软硬件知识图谱节点 1:[告警类型 1,告警类型 2…], 软硬件知识图谱节点 2:[告警类型 1,告警类型 2…]
告警因果图构建: 基于告警收敛结果,在图数据库中按照系统级别查询每个系统下的所有节点之间的连接子图,并将得到的结果输入到 networkx 中,得到某个系统下的各节点之间的最终连接关系,即告警因果图。
根因路径: 基于上述生成的告警因果图,以及权重来计算疑似路径,排序给出根因路径。
6.2 告警收敛
基于上述的主要流程,我们现以时间粒度为前后 5min 内的告警数据创建时间切片样本,并取告警数量最多的前 100 个时间片的样本作为主要分析的内容,其中第一个时间切片中的各个系统下各节点的告警收敛结果如下:
6.3 根因定位
对于上述第一个时间切片中的某个系统,在图数据库中查询该系统下的所有节点构成的子图,以 “苏宁 XXX 系统”这个系统为例,查询得到在“一跳”范围内与该系统下的所有节点之间有关联的节点的关系大致如下(红色表示物理机节点,棕色表示虚拟机节点,绿色表示软件节点):
上图中出现的所有节点中,既包括有告警信息的,也包括没有告警消息的,因此将上述因果图输入到 netwokx 后,可以得到最终经过精简后的有告警消息发出的各节点的因果图,其中一部分的因果图展示如下:
可以解释为: “192.168.xxx.xxx-host-服务器宕机”导致 “10.104.xxx.xxx-vm-服 务器宕机”,进而导致“software-网页访问失败”。
进一步的,根据上述生成的因果图,再结合因果图中每条边的权重,就可以计算出该时间切片下的单个系统层面上的所有疑似根因路径,经过排序后即可得到最终的根因路径。本例中最终得到的几条根因路径如下:
从上图可以看出,程序最终给出了几条疑似的根因路径,其中包括最长的一 条,可以解释为: ip 为 192.168.xxx.xxx 这台物理机由于网卡 overruns 的
原因,导致了这台物理机的宕机,从而使得这台物理机上的 ip 为 10.104.xx x.xxx 的虚拟机宕机,最终导致这台虚拟机上的相关的网页访问失败。
效果及优化方向
在告警收敛方面,经过验证,基于运维知识图谱可缩减至少 50% 的告警量,最高可达到 60% 以上,有效率的缓解了告警风暴的压力; 另外,在时效性方面,基于 1、2、5min 不同长度的时间切片进行告警收敛,耗时可以控制在 6 s 以内,满足告警通知的时效性要求。
在根因定位方面,经一线运维人员验证,每个告警时间段提供的可能根因传播路径集合基本包含了真实的根因,有效缩短了运维人员的干预时间;另外在耗时上,根因定位可以控制在 3s 以内,速度较快,满足时效性要求。
但目前通过因果发现算法自动构建的告警知识图谱准确率有待进一步提升,继续调研评估其他告警知识图谱构建方式。继续完善软硬件和调用链告警知识图谱,当前仅是基于 CMDB 和 Zabbix 告警数据构建运维知识图谱进行告警收 敛和根因定位,基础设施层面的告警数据更简单、规范,后续还要扩展到更复杂的非基础设施层面的告警数据中。当前还没有利用知识图谱对异常检测(时间序列数据)结果做根因定位的应用实践,这需要对时间序列做因果关系的发现,构建时间序列之间的因果图,从而打通知识图谱与异常检测的壁垒,这也是知识图谱后续使用的扩展方向之一。
谢谢你读完本文 (///▽///)
要来近距离体验一把图数据库吗?NebulaGraph 阿里云计算巢现 30 天免费使用中,点击链接 节省大量的部署安装时间来搞定业务吧~
想看源码的小伙伴可以前往 GitHub 阅读、使用、(з)-☆ star 它 -> GitHub;和其他的 NebulaGraph 用户一起交流图数据库技术和应用技能,留下「你的名片」一起玩耍呢~
相关文章:

苏宁基于 AI 和图技术的智能监控体系的建设
汤泳,苏宁科技集团智能监控与运维产研中心总监,中国商业联合会智库顾问,致力于海量数据分析、基于深度学习的时间序列分析与预测、自然语言处理和图神经网络的研究。在应用实践中,通过基于 AI 的方式不断完善智能监控体系的建设&a…...

3、内存管理
文章目录1、内存的基础知识1.1、什么是内存?1.2、进程的运行原理--指令1.3、逻辑地址 & 物理地址1.4、从写程序到程序运行1.5、装入模块到运行1.6、装入的三种方式--绝对装入1.7、装入的三种方式--静态重定位1.8、装入的三种方式--动态重定位(重定位…...

【蓦然回首忆Java·基础卷Ⅰ】
文章目录开端通过引用创建对象Java的数据存储方式基本类型包装类和高精度数字操作符自动递增和自动递减老生常谈的问题:和equals()如何重写equals方法?短路字面量科学计数法位运算类型转换初始化和清理方法的重载方法的重写无参构造器this与构造器垃圾收…...
类属性和对象属性
6.3 类属性和对象属性 在类定义中,属性按照归属分为对象属性、类属性。按照调用的私密性分为一般属性和私有属性。 6.3.1 类属性和对象属性 对象属性是最常用到的一种属性。即使我们对上面的类:MyClass1实例化了一个mc的对象,mc对象也不能…...

【TensorFlow 】查看Tensorflow和python对应版本、将现有的TensorFlow更新到指定的版本
1、查看Tensorflow和python对应版本 1.1这里我是在TensorFlow官方网址产看的 1、打开官方网址 https://pypi.org/project/tensorflow/1.1.0rc2/#files但是这个网址好像打不开,点击会出现这样 问题不大 输入Tensorflow然后点击搜索,就会跳转到https://p…...

VO、DTO、BO、PO、DO区别
VO、DTO、BO、PO、DO区别 VO:(View Object)视图对象,一般位于Controller层,用于展示视图。DTO:(Data Transfer Object)数据传输对象, 即RPC 接口请求或传输出去的对象&a…...

速看!!!一套能直接拿捏大厂面试官的软件测试面试宝典
3.5.1、说说你们是怎么做自动化测试的☆☆☆☆☆我们的自动化测试主要是web UI的自动化测试,主要用于冒烟测试和主要功能的回归测试或者主流浏览器的兼容性测试,作为手工测试的一种补充,提高测试效率,减少一些重复性的测试工作。1…...

超级完整 的 Maven 讲解 以及私服搭建
第一章 Maven 简介 1.1、Maven 概述 Maven 是一款基于 Java 平台的项目管理和整合工具,它将项目的开发和管理过程抽象成一个项目对象模型(POM)。开发人员只需要做一些简单的配置,Maven 就可以自动完成项目的编译、测试、打包、发…...

数据结构之算法的时间复杂度和空间复杂度
本章重点: 1.算法效率 2.时间复杂度 3.空间复杂度 4. 常见时间复杂度以及复杂度oj练习 目录 1.算法效率 1.2算法的复杂度 2.时间复杂度 2.1 时间复杂度的概念 2.2 大O的渐进表示法 2.3常见时间复杂度计算举例 3.空间复杂度 4. 常见复杂度对比 5.复杂度…...

【微信小程序】使用页面跳转并携带多个特定参数
前言在我们项目的搭建时常常会用到页面跳转,在微信小程序中也支持多个跳转类型。如(wx.switchTab\wx.reLauch\wx.redirectTo\wx.navigateTo\wx.navigateBack)等等,每一个路由API都是有相对应的特定跳转功能,在这里我就不赘述了。微信开发者文…...

CVPR 2021 | Involution:超越convolution和self-attention的神经网络算子
CVPR 2021 | Involution:超越convolution和self-attention的神经网络算子 论文地址:https://arxiv.org/pdf/2103.06255v2.pdf 代码地址:https://github.com/d-li14/involution Involution卷积,文章描述说它比convolution更轻量更高效,形式上比self-attention更加简洁,可以…...

11 OpenCV图像识别之人脸识别
文章目录1 Eigenfaces1.1 建模流程1.2 示例代码2 Fisherfaces2.1 建模流程2.2 示例代码3 Local Binary Histogram3.1 建模流程3.2 示例代码OpenCV 提供了三种人脸识别方法:Eigenfaces Eigenfaces是一种基于PCA(Principal Component Analysis,…...

ssh设置:免密登入、修改默认端口、禁止root登入、限制错误登入次数
服务器: 客户端: 在下面不再说明服务器和客户端。 1.修改ssh默认端口 是在服务器中设置。 该设置涉及三部分:sshd配置文件修改/增加新端口、Selinux添加新端口、Firewall开放新端口。 vim /etc/ssh/sshd.config,找到#Port行&…...

【Fastdfs】| 入门连续剧——安装
作者:狮子也疯狂 专栏:《spring开发》 坚持做好每一步,幸运之神自然会降临在你的身上 目录一. 🦁 前言Ⅰ. 🐇 为什么要使用分布式文件系统?1.1 单机系统 vs 独立文件服务器1.2 分布式文件系统1.3 FastDFS引…...

【ESP32-S3】Pycharm 使用 microPython 教程(避坑)
一、下载Pycharm等操作 1.百度云下载链接 链接:https://pan.baidu.com/s/1tkbMzS5B_v-Cn4WQlTqS3Q?pwd0108 提取码:0108 2.安装 按照压缩包中的教程来,你懂的。 二、配置microPython环境 1.安装 microPython 插件 1.1 File > Sett…...

Allegro如何通过报表的方式检查单板上是否有假器件操作指导
Allegro如何通过报表的方式检查单板上是否有假器件操作指导 在做PCB设计的时候,输出生产文件之前,必须保证PCB上不能存在假器件,如下图,是不被允许的 当PCB单板比较大,如何通过报表的方式检查是否存在假器件,具体操作如下 点击Tools点击Reports...

清理bib文件(删除重复项,仅保留tex中引用的条目)
在写latex文件的过程中,经常会遇到添加了一堆文献的bibtex到bib文件中,有时候文章一长同一篇文献用不同的cite-key引用了多次,同时也会有一些文献最后并没被正文引用,这就需要对bib文件进行清理。 删除重复项 可以用JabRef 在J…...
Rust编程细节知识点拾遗
1.Rust中每一个引用都有生命周期,也就是引用保持有效的作用域。生命周期主要目标是避免悬垂引用,悬垂引用就是引用了已经释放的值。函数中,x的生命周期不能小于返回值得生命周期。当有x和y的时候,两者的生命周期是两个里面较小的那…...

【Linux】线程池
🎇Linux: 博客主页:一起去看日落吗分享博主的在Linux中学习到的知识和遇到的问题博主的能力有限,出现错误希望大家不吝赐教分享给大家一句我很喜欢的话: 看似不起波澜的日复一日,一定会在某一天让你看见坚持…...

运动版蓝牙耳机什么牌子的好、运动款蓝牙耳机推荐
何以解忧?唯有运动。事实已经无数次证明,运动不但可以让你更瘦身、更紧实,更重要的是精神状态也能焕然一新。不知道各位是不是也跟我一样,喜欢在运动的时候听着音乐。但是听音乐就需要有好的续航,否则运动一半没电了&a…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...

SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
掌握 HTTP 请求:理解 cURL GET 语法
cURL 是一个强大的命令行工具,用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中,cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...

Linux 下 DMA 内存映射浅析
序 系统 I/O 设备驱动程序通常调用其特定子系统的接口为 DMA 分配内存,但最终会调到 DMA 子系统的dma_alloc_coherent()/dma_alloc_attrs() 等接口。 关于 dma_alloc_coherent 接口详细的代码讲解、调用流程,可以参考这篇文章,我觉得写的非常…...
高防服务器价格高原因分析
高防服务器的价格较高,主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因: 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器,因此…...

Java后端检查空条件查询
通过抛出运行异常:throw new RuntimeException("请输入查询条件!");BranchWarehouseServiceImpl.java // 查询试剂交易(入库/出库)记录Overridepublic List<BranchWarehouseTransactions> queryForReagent(Branch…...