nginx的七层负载均衡
文章目录
- 一、负载均衡介绍
- 二、nginx的配置文件
- 三、实验过程
- 总结
一、负载均衡介绍
四层负载均衡
所谓四层负载均衡是指OSI七层模型中的传输层, 那么传输层Nginx已经支持TCP/IP的控制, 所以只需要对客户端的请求进行TCP/IP协议的包转发就可以实现负载, 那么他的好处是性能非常快, 只需要底层进行应用处理,而不需要进行一些复杂的逻辑.
七层负载均衡
七层负载均衡是在应用层,那么他可以完成后很多应用方面的协议请求,
当然四层有四层的好处,七层七层的好处,四层就不支持协议的转发,(http,https,DNS等)只支持IP,但是它的速度快.
应用层虽然没有四层负载快,但是支持很多功能,比如说他支持http信息的改写、头部信息的改写、(意识是,七层代理着用户往后请求的时候把我们用户请求的头部信息加上,长连接协议也可以修改等)、
安全应用规则控制、URL匹配规则控制、以及转发、rewrite等一些规则,
所以在应用层的服务里面,可以做的内容就更多了。Nginx是一个典型的七层负载均衡
四层和七层的区别
四层负载均衡数据在底层就进行了分发,而七层负载均衡数据包则是在最顶层进行分发,由此可以看出,七层负载均衡效率没有四层负载均衡高。
但是七层负载均衡更贴近于服务,如HTTP协议就是七层协议,我们可以用Nginx可以作会话保持,URL路径规则匹配,head头改写等等,这些都是四层负载均衡无法实现的。
注意:四层负载均衡不识别域名,七层负载均衡识别域名
二、nginx的配置文件
user nginx nginx; #制定nginx 运行的用户名和用户组
worker_processes 2; #nginx 进程数 建议设置成 CPU几核 这里设置成几
#error_log logs/error.log; 全局错误日志类型 【debug| info|notice | warn| error|alert|crit 】级别从低到高
#error_log logs/error.log notice;
#error_log logs/error.log info;
#pid logs/nginx.pid; nginx #进程文件
events { #参考事件模型 use epoll;worker_connections 65535; #单个进程最大连接数 最大连接数 = 连接数* 进程数 根据硬件调整 只要别让 cpu 100%
}
http {upstream westos{server 172.25.70.2:80;server 172.25.70.3:80;server 172.25.70.1:8080 backup;}include mime.types; #文件的扩展名和映射表 default_type application/octet-stream; #默认的文件类型
}server {listen 80;server_name www.westos.org;location / {proxy_pass http://westos;}}
}
三、实验过程
总结
提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。
相关文章:
nginx的七层负载均衡
文章目录一、负载均衡介绍二、nginx的配置文件三、实验过程总结一、负载均衡介绍 四层负载均衡 所谓四层负载均衡是指OSI七层模型中的传输层, 那么传输层Nginx已经支持TCP/IP的控制, 所以只需要对客户端的请求进行TCP/IP协议的包转发就可以实现负载, 那么他的好处是性能非常快,…...
信息加密技术
介绍信息加密 信息加密是实现数据保密性的手段。 信息加密(Encryption)是将明文信息转换为密文信息,使之在缺少特殊信息时不可读的过程。只有拥有解密方法的对象,经由解密过程,才能将密文还原为正常可读的内容。 现…...
RS485通信总线详解
RS485 总线详解 RS-485 是美国电子工业协会(EIA)在 1983 年批准了一个新的平衡传输标准(Balanced Transmission Standard)也称作差分,EIA 刚开始将 RS(Recommended Standard)做为标准的前缀&am…...
罗技LogitechFlow技术--惊艳的多电脑切换体验
作者:Eason_LYC 悲观者预言失败,十言九中。 乐观者创造奇迹,一次即可。 一个人的价值,在于他所拥有的。所以可以不学无术,但不能一无所有! 技术领域:WEB安全、网络攻防 关注WEB安全、网络攻防。…...
社招中级前端笔试面试题总结
HTTP世界全览 互联网上绝大部分资源都使用 HTTP 协议传输;浏览器是 HTTP 协议里的请求方,即 User Agent;服务器是 HTTP 协议里的应答方,常用的有 Apache 和 Nginx;CDN 位于浏览器和服务器之间,主要起到缓存…...
东南大学研究生上学期英语期末总结
写在前面 作者:夏日 博客地址:https://blog.csdn.net/zss192 本文为东南大学研究生英语上学期期末总结,内容为根据老师所发 PPT 总结得来 相关资料: 点我查看 题型说明 Module 1 International Conference 50% 题型范围&am…...
leaflet 删除所有的marker图层,保留其他图层(085)
第085个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+leaflet项目中清除所有的marker图层,保留其他图层,详情请参考源代码。这里面主要用到了(layer instanceof L.Marker ,注意 L.Marker中Marker首字母要大写。 直接复制下面的 vue+leaflet源代码,操作2分钟即可运行…...
双因素方差分析全流程
上篇文章讲述了“单因素方差分析全流程总结”,单因素方差分析只是考虑了一个自变量(定类)与一个因变量(定量)之间的关系,但是在实际问题研究中可能研究两个或者几个因素与因变量之间的关系,例如…...
微信公众号抽奖怎么做_分享微信抽奖小程序制作的好处
在H5游戏中,抽奖是最受消费者喜爱的模式之一。将H5微信抽奖活动结合到营销中,可以带来意想不到的效果,带流量和曝光率,所以许多企业也会在做活动时添加上不同类型的H5微信抽奖活动。编辑那么,新手怎么搭建微信抽奖活动…...
逻辑回归—分类问题的操作顺序
对于二元分类问题来说,分类的结果和数据的特征之间仍呈现相关关系,但是y的值不再是连续的,是0~1的跃迁。但是在这个过程中,什么仍然是连续的呢?”是概率,概率是逐渐升高的,当达到一个…...
查询服务器tns文件路径,oracle数据库tns配置方法详解
查询服务器tns文件路径,oracle数据库tns配置方法详解 TNS简要介绍与应用 Oracle中TNS的完整定义:transparence Network Substrate透明网络底层, 监听服务是它重要的一部分,不是全部,不要把TNS当作只是监听器。 TNS是Oracle Net…...
【数据结构】链表
目录 数据结构之链表:: SList.h 1.链表的概念及结构 2.链表的分类 SList.c 3.动态申请一个结点 4.单链表打印 5.单链表销毁 6.单链表头插 7.单链表头删 8.单链表尾插 9.单链表尾删 10.单链表查找 11.单链表在pos之前插入…...
一文讲明Hystrix熔断器
前言 解决问题: 主要防止服务器集群发生雪崩, 起到对服务器的保护作用 GitHub地址:https://github.com/Netflix/Hystrix/wiki 1 Hystrix是什么 1.1 分布式系统面临的问题 复杂分布式体系结构中的应用程序有数十个依赖关系,每个依赖关系在某些时候将不…...
第12篇:Java类核心构成要素分析
目录 1、Java类构成要素 1.1 如何定义类 1.2 如何定义变量 1.2.1 类变量 1.2.2 实例变量...
记一次 .NET 某医保平台 CPU 爆高分析
一:背景 1. 讲故事 一直在追这个系列的朋友应该能感受到,我给这个行业中无数的陌生人分析过各种dump,终于在上周有位老同学找到我,还是个大妹子,必须有求必应 😁😁😁。 妹子公司的…...
滤波算法 | 无迹卡尔曼滤波(UKF)算法及其MATLAB实现
目录简介UKF滤波滤波流程和公式MATLAB程序结论简介 本文接着分享位姿跟踪和滤波算法中用到的一些常用程序,希望为后来者减少一些基础性内容的工作时间。以往分享总结见文章:位姿跟踪 | 相关内容目录和链接总结(不断更新中~~~) 本…...
JAVA开发(运行JAR包怎么指定虚拟机内存大小)
我们都使用过 java -jar xxx.jar包去运行jar包。但是有时候要指定jar包运行时内存,该怎么做,而且设置多大怎么衡量,很多人从来没有了解过。 背景: 我们开发java程序,可能涉及到开发环境,测试环境&#x…...
领导力的终极奥义
过去,我曾多次演讲、著书,把自己在长达半个世纪的经营实践中所体悟到的经营思想和方法告诉中国的企业家。 但是,对于任何一家企业来说,不管它倡导了多么高尚的经营哲学,不管它构建了多么精致的管理系统,这样…...
1-MATLAB APP Design-图像的输入与输出
一、APP 界面设计展示 新建一个空白的APP,在此次的学习中,我们会用到编辑字段(文本框)、 按钮、坐标区和面板,首先在界面中拖入一个编辑字段(文本框),在文本框中输入内容:图形的输入与输出,调整背景颜色,字体的颜色为黑色,字体的大小调为25....
【C++】内存管理
目录一、C/C内存分布二、C内存管理方式2.1、new/delete操作内置类型2.2、new和delete操作自定义类型三、operator new与operator delete函数3.1、operator new与operator delete函数四、new和delete的实现原理4.1、内置类型4.2、自定义类型五、定位new表达式(placement-new)六、…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist
现象: android studio报错: [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决: 不要动CMakeLists.…...
Unity UGUI Button事件流程
场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...
wpf在image控件上快速显示内存图像
wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...
LangFlow技术架构分析
🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
