第七章,相似矩阵及其应用,3-二次型、合同矩阵与合同变换
第七章,相似矩阵及其应用,3-二次型、合同矩阵与合同变换
- 二次型相关概念
- 二次型
- 二次型的标准形和规范形
- 表示形式
- 合同矩阵与合同变换
- 定义 合同
- 合同矩阵的性质
- 等价、相似、合同三种关系的对比
- 等价
- 相似
- 合同
玩转线性代数(38)二次型概念、合同矩阵与合同变换的笔记,相关证明以及例子见原文
二次型相关概念
二次型
含有n个变量 x 1 , x 2 , . . . x n x_1,x_2,...x_n x1,x2,...xn的二次齐次函数:
f ( x 1 , x 2 , . . . x n ) = a 11 x 1 2 + a 22 x 2 2 + . . . + a n n x n 2 + 2 a 12 x 1 x 2 + 2 a 13 x 1 x 3 + . . . + 2 a n − 1 , n x n − 1 x n f(x_1,x_2,...x_n)=a_{11}x_1^2+a_{22}x_2^2+...+a_{nn}x_n^2+2a_{12}x_1x_2+2a_{13}x_1x_3+...+2a_{n-1,n}x_{n-1}x_n f(x1,x2,...xn)=a11x12+a22x22+...+annxn2+2a12x1x2+2a13x1x3+...+2an−1,nxn−1xn
称为二次型。
二次型的标准形和规范形
f = k 1 y 1 2 + k 2 y 2 2 + . . . + k n y n 2 f=k_1y_1^2+k_2y_2^2+...+k_ny_n^2 f=k1y12+k2y22+...+knyn2
这种只含平方项的二次型,称为二次型的标准形。
如果二次型的标准形形如:
f = y 1 2 + . . . + y p 2 − y p + 1 2 − . . . − y r 2 f = y_1^2+...+y_p^2-y_{p+1}^2-...-y_r^2 f=y12+...+yp2−yp+12−...−yr2
即系数只有-1,1,0三个取值,称为二次型的规范形。
表示形式
f ( x 1 , x 2 , . . . x n ) = a 11 x 1 2 + a 22 x 2 2 + . . . + a n n x n 2 + 2 a 12 x 1 x 2 + 2 a 13 x 1 x 3 + . . . + 2 a n − 1 , n x n − 1 x n f(x_1,x_2,...x_n)=a_{11}x_1^2+a_{22}x_2^2+...+a_{nn}x_n^2+2a_{12}x_1x_2+2a_{13}x_1x_3+...+2a_{n-1,n}x_{n-1}x_n f(x1,x2,...xn)=a11x12+a22x22+...+annxn2+2a12x1x2+2a13x1x3+...+2an−1,nxn−1xn
取 a i j = a j i a_{ij}=a_{ji} aij=aji(对称矩阵),则 2 a i j x i x j = a i j x i x j + a j i x j x i 2a_{ij}x_ix_j=a_{ij}x_ix_j+a_{ji}x_jx_i 2aijxixj=aijxixj+ajixjxi,于是
f = ∑ i , j = 1 n a i j x i x j = ( x 1 , x 2 , . . . , x n ) ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ a n 1 a n 2 ⋯ a n n ) ( x 1 x 2 ⋮ x n ) = x T A x f=\sum_{i,j=1}^na_{ij}x_ix_j = (x_1,x_2,...,x_n)\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}=x^TAx f=i,j=1∑naijxixj=(x1,x2,...,xn) a11a21⋯an1a12a22⋯an2⋯⋯⋯⋯a1na2n⋯ann x1x2⋮xn =xTAx
把对称矩阵A叫做二次型f的矩阵,f叫做对称矩阵A的二次型,对称矩阵A的秩叫做二次型f的秩
合同矩阵与合同变换
设有可逆线性变换x=Cy,将x=Cy代入 f = x T A x f=x^TAx f=xTAx,有
f = = x T A x = ( C y ) T A ( C y ) = y T ( C T A C ) y = y T B y f==x^TAx=(Cy)^TA(Cy)=y^T(C^TAC)y=y^TBy f==xTAx=(Cy)TA(Cy)=yT(CTAC)y=yTBy
理解:线性变换后,将向量的坐标由x变换为了y,令原坐标系为 E = ( e 1 , e 2 , . . . , e n ) E=(e_1,e_2,...,e_n) E=(e1,e2,...,en),变换之后, E C = C EC=C EC=C,过渡矩阵为C,则新基为 C = ( c 1 , c 2 , . . . , c n ) C=(c_1,c_2,...,c_n) C=(c1,c2,...,cn),向量在新基下的坐标为y, y = C − 1 x y=C^{-1}x y=C−1x是坐标变换公式
定义 合同
设A与B为n阶方阵,若有可逆矩阵C,使 B = C T A C B=C^TAC B=CTAC,则称矩阵A与B合同
本质:是同一个二次型在不同基下的矩阵,对比相似矩阵,相似矩阵是同一个线性变换在不同基下的表示矩阵,合同矩阵首先都是对称的,又因 B = C T A C B=C^TAC B=CTAC,C可逆,故合同矩阵又是等价的。
合同矩阵的性质
(1)自反性 任意方阵A与其自身合同: E T A E = A E^TAE=A ETAE=A
(2)对称性 若A与B合同,则B与A合同:若A与B合同,则存在可逆阵C使得 C T A C = B C^TAC=B CTAC=B,则 A = ( C T ) − 1 B ( C − 1 ) = ( C − 1 ) T B ( C − 1 ) A=(C^T)^{-1}B(C^{-1})=(C^{-1})^TB(C^{-1}) A=(CT)−1B(C−1)=(C−1)TB(C−1),即B与A合同
(3)传递性 若A与B合同,B与C合同,则A与C合同:由 B = C 1 T A C 1 , C = C 2 T B C 2 B=C_1^TAC_1,C=C_2^TBC_2 B=C1TAC1,C=C2TBC2,得 C = C 2 T ( C 1 T A C 1 ) C 2 = ( C 1 C 2 ) T A ( C 1 C 2 ) C=C_2^T(C_1^TAC_1)C_2=(C_1C_2)^TA(C_1C_2) C=C2T(C1TAC1)C2=(C1C2)TA(C1C2),故A与C合同。
等价、相似、合同三种关系的对比
等价
A经过若干次初等行变换或初等列变换得到B,则A与B等价 ⇔ \Leftrightarrow ⇔ 存在可逆阵P,A,使 P A Q = B PAQ=B PAQ=B成立
相似
A与B相似 ⇔ \Leftrightarrow ⇔存在可逆阵P,使 P − 1 A P = B P^{-1}AP=B P−1AP=B。(同一个线性变换在不同基下的表示矩阵)
合同
A与B合同 ⇔ \Leftrightarrow ⇔存在可逆阵P,使 P T A P = B P^TAP=B PTAP=B。(同一个二次型在不同可逆线性变换下的矩阵)
通过以上三个定义可以看出,相似矩阵一定是等价矩阵,合同矩阵一定是等价矩阵.但等价矩阵不一定是相似矩阵,也不一定是合同矩阵.
相关文章:
第七章,相似矩阵及其应用,3-二次型、合同矩阵与合同变换
第七章,相似矩阵及其应用,3-二次型、合同矩阵与合同变换 二次型相关概念二次型二次型的标准形和规范形表示形式 合同矩阵与合同变换定义 合同合同矩阵的性质等价、相似、合同三种关系的对比等价相似合同 玩转线性代数(38)二次型概念、合同矩阵与合同变换…...

css学习7(盒子模型)
1、盒子模型图: Margin(外边距) - 清除边框外的区域,外边距是透明的。Border(边框) - 围绕在内边距和内容外的边框。Padding(内边距) - 清除内容周围的区域,内边距是透明的。Content(内容) - 盒子的内容,显示文本和图像。 <!DO…...

C++笔记之临时变量与临时对象与匿名对象
C笔记之临时变量与临时对象与匿名对象 code review! 文章目录 C笔记之临时变量与临时对象与匿名对象1.C中的临时变量指的是什么?2.C中的临时对象指的是什么?3.C中临时对象的作用是什么?什么时候要用到临时对象?4.给我列举具体的例子说明临…...

缓存技术(缓存穿透,缓存雪崩,缓存击穿)
大家好 , 我是苏麟 , 今天聊一聊缓存 . 这里需要一些Redis基础 (可以看相关文章等) 本文章资料来自于 : 黑马程序员 如果想要了解更详细的资料去黑马官网查看 前言:什么是缓存? 缓存,就是数据交换的 缓冲区 (称作Cache [ kʃ ] ),俗称的缓存就是缓冲区内的数据,是存贮数据的…...

实操教程 | 触发器实现 Apache DolphinScheduler 失败钉钉自动告警
作者 | sqlboy-yuzhenc 背景介绍 在实际应用中,我们经常需要将特定的任务通知给特定的人,虽然 Apache DolphinScheduler 在安全中心提供了告警组和告警实例,但是配置起来相对复杂,并且还需要在定时调度时指定告警组。通过这篇文…...

以“迅”防“汛”!5G视频快线筑牢防汛“安全堤”
近期,西安多地突发山洪泥石流灾害。防洪救灾刻不容缓,为进一步做好防汛工作,加强防洪调度监管,切实保障群众的生命财产安全,当地政府管理部门亟需拓展智能化技术,通过人防技防双保障提升防灾救灾应急处置能…...

jmeter 性能测试工具的使用(Web性能测试)
1、下载 该软件不用安装,直接解压打开即可使用。 2、使用 这里就在win下进行,图形界面较为方便 在目录apache-jmeter-2.13\bin 下可以见到一个jmeter.bat文件,双击此文件,即看到JMeter控制面板。主界面如下: 3、创…...

springboot整合第三方技术邮件系统
springboot整合第三方技术邮件系统,发邮件是java程序的基本操作,springboot整合javamail其实就是简化开发。不熟悉邮件的小伙伴可以先学习完javamail的基础操作,再来看这一部分内容才能感触到springboot整合javamail究竟简化了哪些操作。简化…...
Python入门学习——Day2-变量和数据类型
一、Python 变量 在Python中,变量用于保存数据,方便程序对数据的处理和操作。下面是关于Python变量的一些重要概念: 变量命名规则: 变量名由字母、数字和下划线组成。变量名可以以字母或下划线开头,但不能以数字开头…...

Graylog 更改显示的时区(Display timezone)
每个 Graylog 用户都可以配置他们的显示时区。 这会更改用于查看日志消息的时区,但不会更改日志消息的原始时区。 默认情况下,Graylog 显示 UTC 格式的所有时间戳(也就是 0:00)。就像是下面这样 非Admin账户要更改时区࿱…...

【网络安全防护】上海道宁与Bitdefender帮助您构建弹性网络并降低安全运营成本
在网络的世界中 风险变得更加常见与复杂 企业需要从网络安全转向网络弹性 复杂的网络攻击已非常普遍 在面临攻击时 企业如何保持业务连续性? Bitdefender GravityZone将 风险分析、安全加固、威胁预防 检测和响应功能相结合 帮助您构建弹性网络 并降低安全…...

文心一言 VS CHATGPT
由于近几天来,我的手机短信不断收到百度公司对于“文心一言”大模型的体验邀请(真是不胜其烦)!!所以我就抱着试试看的态度点开了文心一言的链接:文心一言 目前看来,有以下两点与chatgpt是有比较…...
2023-09-01力扣每日一题
链接: 2240. 买钢笔和铅笔的方案数 题意: 一共total元,两种笔分别cost1和cost2元,求能买的的笔的所有情况,不要求花光钱 解: 枚举其中一个数字就行 实际代码: #include<bits/stdc.h&g…...

【Python】从入门到上头— IO编程(8)
文章目录 一.IO编程是什么二.文件读写1.读取文件2.file-like Object二进制文件字符编码 3.写文件file对象的常用函数常见标识符 三.StringIO和BytesIO1.StringIO2.BytesIO 四.操作文件和目录五.序列化和反序列化1.pickle.dumps()2.pickle.loads()3.JSON 一.IO编程是什么 IO在计…...

R语言对综合社会调查GSS数据进行自举法bootstrap统计推断、假设检验、探索性数据分析可视化|数据分享...
全文链接:https://tecdat.cn/?p33514 综合社会调查(GSS)是由国家舆论研究中心开展的一项观察性研究。自 1972 年以来,GSS 一直通过收集当代社会的数据来监测社会学和态度趋势。其目的是解释态度、行为和属性的趋势和常量。从 197…...

LeetCode 刷题第四轮 Offer I + 类型题
目录 剑指 Offer 04. 二维数组中的查找 剑指 Offer 29. 顺时针打印矩阵 剑指 Offer 09. 用两个栈实现队列 剑指 Offer 30. 包含min函数的栈 剑指 Offer 10- I. 斐波那契数列 [类型:记忆优化 递归 / 动态规划] 剑指 Offer 10- II. 青蛙跳台阶问题 [类型&am…...

LabVIEW计算测量路径输出端随机变量的概率分布密度
LabVIEW计算测量路径输出端随机变量的概率分布密度 今天,开发算法和软件来解决计量综合的问题,即为特定问题寻找最佳测量算法。提出了算法支持,以便从计量上综合测量路径并确定所开发测量仪器的测量误差。测量路径由串联的几个块组成&#x…...

[C++ 网络协议] 多进程服务器端
具有代表性的并发服务器端实现模型和方法: 多进程服务器:通过创建多个进程提供服务。✔ 多路复用服务器:通过捆绑并统一管理I/O对象提供服务。 多线程服务器:通过生成与客户端等量的线程提供服务。 目录 1. 进程的概念及应用 1.…...

李宏毅 2022机器学习 HW2 strong baseline 上分路线
strong baseline上分路线 baseline增加concat_nframes (提升明显)增加batchnormalization 和 dropout增加hidden layer宽度至512 (提升明显) 提交文件命名规则为 prediction_{concat_nframes}[{n_hidden_layers}{dropout}_bn].c…...

伦敦银交易时间怎么选择?
伦敦银和伦敦金都是全球性的交易品种,一般的现货贵金属交易平台,都可以同时经营这两个品种,而且它们的交易时间是一致的,以香港市场的平台为例,基本上交易时间都会从北京周一的早上7点,延续到周六凌晨5点左…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
在 Spring Boot 项目里,MYSQL中json类型字段使用
前言: 因为程序特殊需求导致,需要mysql数据库存储json类型数据,因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving
地址:LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...