自动驾驶——【规划】记忆泊车特殊学习路径拟合
1.Back ground

如上图,SLAM学习路线Start到End路径,其中曲线SDAB为D档位学习路径,曲线BC为R学习路径,曲线AE为前进档D档学习路径。
为了使其使用记忆泊车时,其驾驶员体验感好,需去除R档倒车部分轨迹,并拟合一条可用的曲线
2.Algorithm Introduction

D点作为起点,D(XD,YD,theta_D),C点作为终点(XC,YC,theta_C),使用y = a0 + a1 * x + a2 * x^2 + a3 * x^3拟合曲线DC,有:
YC = a0 + a1 * XC+ a2 * XC ^2 + a3 * XC^3
YD = a0 + a1 * XD + a2 * XD ^2 + a3 * XD ^3
tan(theta_C) = a1 + 2 * a2 * XC + 3 * a3 * XC^2
tan(theta_D) = a1 + 2 * a2 * XD + 3 * a3 * XD^2
即可求解a0 a1 a2 a3,进而得出曲线DC。
最后优化的曲线为SDCE。
3.Coding using MATLAB
%Function:记忆泊车学习路径拟合
%Create by:Juchunyu
%Date:2023-09-01 17:00:42%设计轨迹x,y
% y = 2 (10>=x>=0)
% y = -1.2/50 *x^2 - 4.4/10 *x (10>=x>=5)
% y = 1.6 (20>=x>=5)
slam_x = [];
slam_y = [];
slam_theta = [];
GearInfo = [];%D:4 R:2
D = 4;
R = 2;
%Generate trajpoint
for i = 0 : 0.2 :10slam_x = [slam_x i];slam_y = [slam_y 2];GearInfo = [GearInfo D];slam_theta = [slam_theta 0];
end
for i =10:-0.2:5slam_x = [slam_x i];y_temp = -1.2*i*i/50 + 4.4 * i/10;slam_y = [slam_y y_temp];GearInfo = [GearInfo R];slam_theta_temp = -2.4*i/50 - 4.4/10;slam_theta = [slam_theta slam_theta_temp];
endfor i = 5:0.2:20slam_x = [slam_x i];slam_y = [slam_y 1.6];GearInfo = [GearInfo D];slam_theta = [slam_theta 0];
endfigure(1)
plot(slam_x,slam_y);
title('SLAM学习曲线')
hold on
%%处理算法%检测倒车 只检测一次倒车
Index_start = 0;
Index_end = 0;
Index_startArr = [];
Index_endArr = [];[m_ size_] = size(slam_x);while i < size_Index_start = 0;Index_end = 0;finish_Flag = 0;if(GearInfo(1,i) == R)Index_start = i;j = Index_start;while j < size_if GearInfo(1,j) == DIndex_end = j;finish_Flag = 1;break;endj = j + 1; endif(finish_Flag == 1)Index_startArr = [Index_startArr Index_start];Index_endArr = [Index_endArr Index_end];endi = j;endi = i + 1;
endPointCIndx = Index_endArr(1,1);
PointBIndx = Index_startArr(1,1);
PointAIndx = 0;
%处理算法
% find near Point
min_ = 1000000;
for i = 1:1:Index_startArr(1,1)dist = ((slam_x(1,PointCIndx) - slam_x(1,i))^2 + (slam_y(1,PointCIndx) - slam_y(1,i))^2)^(0.5);if(dist < min_)min_ = dist;PointAIndx = i;end
end%计算DAdistDA = ((slam_x(1,PointAIndx) - slam_x(1,1))^2 + (slam_y(1,PointAIndx) - slam_y(1,1))^2)^(0.5);%往前推算1m
PointDIndx = PointAIndx;
if(distDA > 1.0)for i = PointAIndx:-1:1dist_ = ((slam_x(1,PointAIndx) - slam_x(1,i))^2 + (slam_y(1,PointAIndx) - slam_y(1,i))^2)^(0.5);if(dist_ > 1.0)PointDIndx = i;break; endend
end%处理D点到C点曲线平滑
PointDx = slam_x(1,PointDIndx);
PointDy = slam_y(1,PointDIndx);PointCx = slam_x(1,PointCIndx);
PointCy = slam_y(1,PointCIndx);
%A*X = BA(1,1) = 1;
A(1,2) = PointCx;
A(1,3) = PointCx * PointCx;
A(1,4) = PointCx * PointCx * PointCx;A(2,1) = 1;
A(2,2) = PointDx;
A(2,3) = PointDx * PointDx;
A(2,4) = PointDx * PointDx * PointDx;A(3,1) = 0;
A(3,2) = 1;
A(3,3) = 2 * PointCx;
A(3,4) = 3 * PointCx * PointCx;A(4,1) = 0;
A(4,2) = 1;
A(4,3) = 2 * PointDx;
A(4,4) = 3 * PointDx * PointDx;B(1,1) = PointCy;
B(2,1) = PointDy;
B(3,1) = tan(slam_theta(1,PointCIndx));
B(4,1) = tan(slam_theta(1,PointDIndx));X = A^-1 * B;%%拟合曲线系数
a0 = X(1,1);
a1 = X(2,1);
a2 = X(3,1);
a3 = X(4,1);%重组轨迹曲线
slam_Xfinal = [];
slam_Yfinal = [];
slam_thetaFinal = [];
for i = 1:1:PointDIndxslam_Xfinal = [slam_Xfinal slam_x(1,i)];slam_Yfinal = [slam_Yfinal slam_y(1,i)];slam_thetaFinal = [slam_thetaFinal slam_theta(1,i)];
end%拟合曲线DC
for x = PointDx:0.2:PointCxslam_Xfinal = [slam_Xfinal x];y_temp = a0 + a1 * x + a2 * x^2 + a3 * x^3;theta_temp = a1 + 2 * a2 * x + 3 * a3 *x^2;slam_Yfinal = [slam_Yfinal y_temp];slam_thetaFinal = [slam_thetaFinal theta_temp];
end%组合后部分曲线
for i = PointCIndx:1:size_slam_Xfinal = [slam_Xfinal slam_x(1,i)];slam_Yfinal = [slam_Yfinal slam_y(1,i)];slam_thetaFinal = [slam_thetaFinal slam_theta(1,i)];
endhold on figure(2)
plot(slam_Xfinal,slam_Yfinal,'r');
title('处理后的SLAM学习曲线')


4.Exist Problems
但是存在问题,
(1) AC距离很小的时候的处理
(2) 学习路线中多次倒车的处理
(3) DC在X轴方向投影距离很小时的处理。
2030901
鞠春宇
相关文章:
自动驾驶——【规划】记忆泊车特殊学习路径拟合
1.Back ground 如上图,SLAM学习路线Start到End路径,其中曲线SDAB为D档位学习路径,曲线BC为R学习路径,曲线AE为前进档D档学习路径。 为了使其使用记忆泊车时,其驾驶员体验感好,需去除R档倒车部分轨迹&#x…...
【跟小嘉学 Rust 编程】十六、无畏并发(Fearless Concurrency)
系列文章目录 【跟小嘉学 Rust 编程】一、Rust 编程基础 【跟小嘉学 Rust 编程】二、Rust 包管理工具使用 【跟小嘉学 Rust 编程】三、Rust 的基本程序概念 【跟小嘉学 Rust 编程】四、理解 Rust 的所有权概念 【跟小嘉学 Rust 编程】五、使用结构体关联结构化数据 【跟小嘉学…...
Android 进阶——图形显示系统之VSync和 Choreographer的创建详解(一)
引言 前一篇文章Android 进阶——图形显示系统之底层图像显示原理小结(一)介绍了关于Android 图形显示系统的基础理论,相信你对于Android的图形显示系统中图形界面渲染刷新机制有了更深的了解,接下来进一步讲解VSync和Choreography的联系和作用。 一、VSync 信号的产生概…...
SQL Server开启变更数据捕获(CDC)
一、CDC简介 变更数据捕获(Change Data Capture ,简称 CDC):记录 SQL Server 表的插入、更新和删除操作。开启cdc的源表在插入、更新和删除操作时会插入数据到日志表中。cdc通过捕获进程将变更数据捕获到变更表中,通过…...
八、性能测试
八、性能测试 8.1 性能测试代码 #include"ConcurrentAlloc.h"// ntimes 一轮申请和释放内存的次数 // rounds 轮次 void BenchmarkMalloc(size_t ntimes, size_t nworks, size_t rounds) {std::vector<std::thread> vthread(nworks);std::atomic<size_t&g…...
景芯SoC 芯片全流程培训
【全网唯一】景芯SoC是一款用于芯片全流程培训的低功耗ISP图像处理SoC,采用低功耗RISC-V处理器,内置ITCM SRAM、DTCM SRAM,集成包括MIPI、ISP、CNN、QSPI、UART、I2C、GPIO、百兆以太网等IP,采用SMIC40工艺设计流片。 培训数据包括…...
目标检测后的图像上绘制边界框和标签
效果如图所示,有个遗憾就是CV2在图像上显示中文有点难,也不想用别的了,所以改成了英文,代码在下面了,一定要注意一点,就是标注文件的读取一定要根据自己的实际情况改一下,我的所有图像的标注文件…...
Leetcode: 1. 两数之和 【题解超详细】
前言 有人夜里挑灯看花,有人相爱,有人夜里开车看海,有人leetcode第一题都做不出来。 希望下面的题解可以帮助你们开始 你们的 leetcode 刷题 的 天降之路 题目 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中…...
PHP 通过 Redis 解决并发请求的操作问题
比如PHP收到两个并发的请求A和B,要求只能其中一个请求处理S1操作,另一个请求直接返回失败,可以通过redis去解决: SETNX(SET if Not eXists)是 Redis 中的一个原子命令,用于设置键-值对…...
浅谈信息论和信息编码
目录 背景 信息是什么 信息度量 小白鼠实验 哈夫曼编码 密码学 其它应用 背景 克劳德艾尔伍德香农(Claude Elwood Shannon)出生于 1916 年 美国密歇根州。1936 年毕业于密歇根大学,获得数学和电子工程学士学位。之后,他在麻…...
【测试】笔试02
文章目录 1. 下面不属于软件测试步骤的是2. 关于测试驱动开发,描述错误的是3. 在软件测试中,圈复杂度(Cyclomatic complexity):代码逻辑复杂度的度量,提供了被测代码的路径数量。圈复杂度可通过系统控制流图…...
公司内部网段多管控乱,该如何规范跨网文件传输交换?
古往今来,高筑墙一直是有效的防御措施。从边塞长城到护城河外的高高城墙,都是利用隔离地域的形式实现保护安全域的效果。这样一来,城内的安全域可以在遇到危险时受到有效保护。 在企业网络安全防护方面,网络安全域隔离也是网络安全…...
Ceph入门到精通-OSD waring 设置建议
OSD 以下检查表明 OSD 节点存在问题。 警告 1 在 /var/lib/ceph/osd 中找到的多个ceph_fsid值。 这可能意味着您正在托管许多集群的 OSD 此节点或某些 OSD 配置错误以加入 您期望的集群。 2 设置可能会导致数据丢失,因为如果 未达到最小值,Ceph 将不会确…...
软件测试工程师如何快速理解业务?
1. 阅读需求文档和业务资料 仔细阅读与业务相关的文档和资料对于理解业务至关重要。 需求文档通常描述了软件的功能和用户需求,而业务规范则详细说明了业务流程、规则和标准。 仔细阅读这些文档,你可以了解业务的基本概念、要求和流程。 同时&#x…...
【教程】部署apprtc服务中安装google-cloud-cli组件的问题及解决
#0# 前置条件 已经安装完成node,grunt,node 组件和python pip包等。需要安装google-cloud-cli组件。 Ubuntu安装google-cloud-cli组件 apprtc项目运行需要google-cloud-cli前置组件,且运行其中的dev_appserver.py。 根据google官方的关于安…...
C++——shared_ptr:make_shared的用处,与shared_ptr直接构造的区别
shared_ptr shared_ptr继承自__shared_ptr,其中有两个对象,一个是指向资源的指针,一个是控制块,指向一个引用计数对象。控制块中存储了强引用和弱引用的计数,强引用Uses代表shared_ptr对象的引用计数,弱引…...
【网络安全带你练爬虫-100练】第17练:分割字符串
目录 一、目标1:使用函数分割 二、目标2:使用函数模块 三、目标3:使用正则匹配 一、目标1:使用函数分割 目标:x.x.x.x[中国北京 xx云] 方法:split函数replace函数 1、分割:使用split()方法将…...
Unity 之ToolTip的用法
文章目录 在Unity中,ToolTip是一个在编辑器中使用的UI元素,它提供了鼠标悬停在某个对象或控件上时显示的文本信息。ToolTip通常用于向开发人员提供有关对象、字段、控件或菜单项的附加信息,从而帮助他们更好地理解和使用这些元素。 ToolTip通…...
xsschallenge通关(11-15)
level 11 老规矩,先查看源码,做代码审计: <?php ini_set("display_errors", 0); $str $_GET["keyword"]; $str00 $_GET["t_sort"]; $str11$_SERVER[HTTP_REFERER]; $str22str_replace(">&quo…...
Kubernetes技术--k8s核心技术集群的安全机制RBAC
1.引入 我们在访问k8s的集群的时候,需要经过一下几个步骤: -a:认证 -1).传输安全:对外是不暴露端口:8080,只能够在内部访问,对外使用的是6443端口。 -2).客户端认证的常用几种方式: -https证书 基于ca证书 -https token认证 通过token识别用户 -https <...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
