可控生成:ControlNet原理
🤗关注公众号funNLPer体验更佳阅读🤗
论文:Adding Conditional Control to Text-to-Image Diffusion Models
代码:lllyasviel/ControlNet
简单来说ControlNet希望通过输入额外条件来控制大型图像生成模型,使得图像生成模型根据可控。
文章目录
- 1. 动机
- 2. ControlNet原理
- 3. ControlNet inStable Diffusion Model
- 3.1 网络结构
- 3.2 训练过程
- 4. 生成效果
- 5. 参考
1. 动机
当前文生图任务中会出现如下问题:
- 特定任务中往往无法获取大规模的训练数据
- 对于大部分人来说,并没有大规模计算集群资源
- 各种图像生成任务中会有多种问题定义、用户控制条件、图像标注的形式
从而造成当前基于prompt控制的模型并不能满足特定业务需求。ControlNet的提出就是为了解决上面几个问题。
此外,我们在使用Stable Diffusion通过prompt生成图片时,很多时候我们希望能够生成一些固定姿态的物体,如下图所示,可能我们就想生成一只和最左边参考图像中鹿的姿态一摸一样的鹿,很显然如果直接通过prompt很难控制,这里主要有两个难点:
- 如何非常准确详细的描述左边鹿的姿态
- 即使参考图片鹿的姿态被描述的很准确,将prompt送入到模型中,依然无法控制姿势不变

而通过controlNet即可非常方便的解决这个问题,如下图所示,只需使用canny边缘检测,将参考图片的物体的边缘识别出来,然后将边缘轮廓图作为条件输入到模型中,即可轻松生成与参考图像姿势一样的鹿,同时通过prompt来控制鹿的颜色

当然,ControlNet功能强大,其输入条件可以是边缘轮廓图、手绘轮廓图、语义分割图、深度图等,从而使得控制变得更加简单。
2. ControlNet原理
如图1左图所示,在一个扩散模型中,如果不加ControlNet的扩散模型,其中原始的神经网络 F \mathcal{F} F 输入 x x x 获得 y y y,其中 Θ \mathcal{\Theta} Θ 是扩散模型的参数。
y = F ( x ; Θ ) y={\mathcal{F}}(x;\Theta) y=F(x;Θ)

图1的右图展示了如何在原始神经网络上 F \mathcal{F} F 上构建ControlNet;ControlNet 将一个大型扩散模型的权重克隆为一个“可训练副本”和一个“锁定副本”:锁定的副本 (locked) 保留了从数十亿张图像中学习到的网络能力,而可训练副本 (trainable copy) 在特定任务的数据集上进行训练,以学习条件控制。经过上图所示的改变后,神经网络的输出变成如下式所示:
y c = F ( x ; Θ ) + Z ( F ( x + Z ( c ; Θ z 1 ) ; Θ c ) ; Θ z 2 ) y_{c}={\mathcal{F}}(x;\Theta)+{\mathcal{Z}}({\mathcal{F}}(x+{\mathcal{Z}}(c;\Theta_{z1});\Theta_{c});\Theta_{z2}) yc=F(x;Θ)+Z(F(x+Z(c;Θz1);Θ
相关文章:
可控生成:ControlNet原理
🤗关注公众号funNLPer体验更佳阅读🤗 论文:Adding Conditional Control to Text-to-Image Diffusion Models 代码:lllyasviel/ControlNet 简单来说ControlNet希望通过输入额外条件来控制大型图像生成模型,使得图像生成模型根据可控。 文章目录 1. 动机2. ControlNet原理…...
【极客时间】MySQL 必知必会-20230901
03 | 表:怎么创建和修改数据表? 新增数据表 CREATE DATABASE demo;CREATE TABLE goodsmaster (barcode TEXT,goodsname TEXT,price DOUBLE, itemnumber INT PRIMARY KEY AUTO_INCREMENT);INSERT INTO demo.goodsmaster (barcode, goodsname,price) VAL…...
53 个 CSS 特效 3(完)
53 个 CSS 特效 3(完) 前两篇地址: 53 个 CSS 特效 153 个 CSS 特效 2 这里是第 33 到 53 个,很多内容都挺重复的,所以这里解释没之前的细,如果漏了一些之前的笔记会补一下,写过的就会跳过。…...
简单数学题:找出最大的可达成数字
来看一道简单的数学题:力扣2769. 找出最大的可达成数字 题目描述的花里胡哨,天花乱坠,但这道题目非常简单。我们最多执行t次操作,只需每次操作都让x-1,让num1,执行t次操作后,x就变为xtÿ…...
[C++ 网络协议] 套接字的多种可选项
目录 1. 套接字的可选项 2. 获取/设置套接字可选项 2.1 getsockopt函数(获取套接字可选项) 2.2 setsockopt函数(设置套接字可选项) 3. 常用套接字可选项 3.1 SOL_SOCKET协议层的SO_TYPE可选项 3.2 SOL_SOCKET协议层的SO_SN…...
2022年03月 C/C++(五级)真题解析#中国电子学会#全国青少年软件编程等级考试
第1题:数字变换 给定一个包含 5 个数字(0-9)的字符串, 例如 “02943”, 请将“12345”变换到它。 你可以采取 3 种操作进行变换 (1)交换相邻的两个数字 (2)将一个数字加 1。 如果加 1 后大于 9, 则变为 0 (3)将一个数字加倍。 如果加倍后大于 9,则将其变为加倍后的…...
***数据转换中常用的两个函数 sscanf,sprintf
1、sscanf将字符串转换成想要的整数或浮点数 (HMI屏中输入浮点数据,到mcu后要转换成对应的浮点数据) sscanf(“0.9”,“%f”,getData) /*! \brief 文本控件通知 \details 当文本通过键盘更新(或调用GetControlValue)时,执行此函数 \details 文本控件的内容以字符串形…...
软件工程(十九) 软件测试
软件测试主要了解软件测试的方法和软件的调试。 1、软件测试方法 1.1、测试基本思想 尽早、不断的进行测试 在V模型其实已经凸显出这种思想了程序员避免测试自己设计的程序 因为测试自己设计的程序,其实是不容易发现问题的,因为人从本质上都不愿意找自己的茬。而且由于你的…...
go中读写锁(rwmutex)源码解读实现原理
go读写锁的实现原理 1、RWMutex读写锁的概念 读写锁也就是我们所使用的RWMutex,其实是对于go本身的mutex做的一个拓展,当一个goroutine获得了读锁后,其他goroutine同样可以获得读锁,但是不能获得写锁。相反,当一个go…...
【人工智能】—_深度优先搜索、代价一致搜索、深度有限搜索、迭代深度优先搜索、图搜索
【人工智能】无信息搜索—BFS 、代价一致、DFS、深度受限、迭代深入深度优先、图搜索 什么是搜索 搜索问题是指既不能通过数学建模解决,又没有其他算法可以套用或者非遍历所有情况才能得出正确结果。这时就需要采用搜索算法来解决问题。搜索就是一种通过穷举所有解…...
uni-app 客服按钮可上下拖动动
项目需求: 因为悬浮客服有时候会遮挡住界面内容,故需要对悬浮的气泡弹窗做可拖动操作 movable-area:可拖动区域 movable-view:可移动的视图容器,在页面中可以拖拽滑动或双指缩放。 属性说明 属性名类型默认值说…...
基于Android的旅游管理系统 微信小程序
随着网络科技的发展,移动智能终端逐渐走进人们的视线,相关应用越来越广泛,并在人们的日常生活中扮演着越来越重要的角色。因此,关键应用程序的开发成为影响移动智能终端普及的重要因素,设计并开发实用、方便的应用程序…...
python-数据可视化-下载数据-CSV文件格式
数据以两种常见格式存储:CSV和JSON CSV文件格式 comma-separated values import csv filename sitka_weather_07-2018_simple.csv with open(filename) as f:reader csv.reader(f)header_row next(reader)print(header_row) # [USW00025333, SITKA AIRPORT, A…...
时序预测 | MATLAB实现SSA-XGBoost(麻雀算法优化极限梯度提升树)时间序列预测
时序预测 | MATLAB实现SSA-XGBoost(麻雀算法优化极限梯度提升树)时间序列预测 目录 时序预测 | MATLAB实现SSA-XGBoost(麻雀算法优化极限梯度提升树)时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 Matlab实现SSA-XGBoost时间序列预测,麻…...
leetcode 823 带因子的二叉树
用动态规划 如果两个节点值不同,要乘2,因为两个节点可以互换位置 dp[i] dp[left] * dp[right] * 2 如果相同 dp[i] dp[left] * dp[right] class Solution {public int numFactoredBinaryTrees(int[] arr) {Arrays.sort(arr);int n arr.length;long[] dp ne…...
钉钉消息已读、未读咋实现的嘞?
前言 一款app,消息页面有:钱包通知、最近访客等各种通知类别,每个类别可能有新的通知消息,实现已读、未读功能,包括多少个未读,这个是怎么实现的呢?比如用户A访问了用户B的主页,难道…...
Java 读取TIFF JPEG GIF PNG PDF
Java 读取TIFF JPEG GIF PNG PDF 本文解决方法基于开源 tesseract 下载适合自己系统版本的tesseract ,官网链接:https://digi.bib.uni-mannheim.de/tesseract/ 2. 下载之后安装,安装的时候选择选择语言包,我选择了中文和英文 3.…...
研磨设计模式day14模板方法模式
目录 场景 原有逻辑 有何问题 解决方案 解决思路 代码实现 重写示例 模板方法的优缺点 模板方法的本质 何时选用 场景 现在模拟一个场景,两个人要登录一个系统,一个是管理员一个是用户,这两个不同身份的登录是由后端对应的两个接…...
7 集群基本测试
1. 上传小文件到集群 在hadoop路径下执行命令创建一个文件夹用于存放即将上传的文件: [atguiguhadoop102 ~]$ hadoop fs -mkdir /input上传: [atguiguhadoop102 hadoop-3.1.3]$ hadoop fs -put wcinput/work.txt /input2.上传大文件 [atguiguhadoop1…...
chrono学习(一)
我想用chrono进行沙土的仿真,首先学习demo_GPU_ballCosim.cpp,这个例子仿真了一些沙土的沉降过程。 首先,运行编辑完成的文件demo_GPU_ballCosim: (base) eowyneowyn-MS-7D20:~/build_chrono/bin$ ./demo_GPU_ballCosim 运行完得…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...
华为OD机试-最短木板长度-二分法(A卷,100分)
此题是一个最大化最小值的典型例题, 因为搜索范围是有界的,上界最大木板长度补充的全部木料长度,下界最小木板长度; 即left0,right10^6; 我们可以设置一个候选值x(mid),将木板的长度全部都补充到x,如果成功…...
什么是VR全景技术
VR全景技术,全称为虚拟现实全景技术,是通过计算机图像模拟生成三维空间中的虚拟世界,使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验,结合图文、3D、音视频等多媒体元素…...
Vue 模板语句的数据来源
🧩 Vue 模板语句的数据来源:全方位解析 Vue 模板(<template> 部分)中的表达式、指令绑定(如 v-bind, v-on)和插值({{ }})都在一个特定的作用域内求值。这个作用域由当前 组件…...
Sklearn 机器学习 缺失值处理 获取填充失值的统计值
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...
