当前位置: 首页 > news >正文

【C++11】可变参数模板(函数模板、类模板)

在C++11之前,类模板和函数模板只能含有固定数量的模板参数。C++11增强了模板功能,允许模板定义中包含0到任意个模板参数,这就是可变参数模板。可变参数模板的加入使得C++11的功能变得更加强大,而由此也带来了许多神奇的用法。

可变参数模板

可变参数模板和普通模板的语义是一样的,只是写法上稍有区别,声明可变参数模板时需要在typenameclass后面带上省略号...

template<typename... Types>

其中,...可接纳的模板参数个数是0个及以上,当然也包括0个

若不希望产生模板参数个数为0的变长参数模板,则可以采用以下的定义:

template<typename Head, typename... Tail>

本质上,...可接纳的模板参数个数仍然是0个及以上的任意数量,但由于多了一个Head类型,由此该模板可以接纳1个及其以上的模板参数

函数模板的使用

在函数模板中,可变参数模板最常见的使用场景是以递归的方法取出可用参数

void print() {}template<typename T, typename... Types>
void print(const T& firstArg, const Types&... args) 
{std::cout << firstArg << " " << sizeof...(args) << std::endl;print(args...);
}

通过设置...,可以向print函数传递任意个数的参数,并且各个参数的类型也是任意。也就是说,可以允许模板参数接受任意多个不同类型的不同参数。这就是不定参数的模板,格外需要关注的是,...三次出现的位置

如果如下调用print函数:

print(2, "hello", 1);

如此调用会递归将3个参数全部打印。细心的话会发现定义了一个空的print函数,这是因为当使用可变参数的模板,需要定义一个处理最后情况的函数,如果不写,会编译错误。这种递归的方式,是不是觉得很惊艳!

在不定参数的模板函数中,还可以通过如下方式获得args的参数个数:

sizeof...(args)

假设,在上面代码的基础上再加上一个模板函数如下,那么运行的结果是什么呢?

#include <iostream>void print() {}template<typename T, typename... Types>
void print(const T& firstArg, const Types&... args) 
{std::cout << firstArg << " " << sizeof...(args) << std::endl;print(args...);
}template <typename... Types>
void print(const Types&... args) 
{std::cout << "print(...)" << std::endl;
}int main(int argc, char* argv[]) 
{print(2, "hello", 1);return 0;
}

现在有一个模板函数接纳一个参数加上可变参数,还有一个模板函数直接接纳可变参数,如果调用print(2, “hello”, 1),会发现这两个模板函数的参数格式都符合。是否会出现冲突、不冲突的话会执行哪一个呢?

运行代码后的结果为:

yngzmiao@yngzmiao-virtual-machine:~/test/$ ./main 
2 2
hello 1
1 0

从结果上可以看出,程序最终选择了一个参数加上不定参数的模板函数。也就是说,当较泛化和较特化的模板函数同时存在的时候,最终程序会执行较特化的那一个

再比如一个例子,std::max函数只可以返回两个数的较大者,如果多个数,就可以通过不定参数的模板来实现:

#include <iostream>template <typename T>
T my_max(T value) 
{return value;
}template <typename T, typename... Types>
T my_max(T value, Types... args) 
{return std::max(value, my_max(args...));
}int main(int argc, char* argv[]) 
{std::cout << my_max(1, 5, 8, 4, 6) << std::endl;return 0;
}

类模板的使用

除了函数模板的使用外,类模板也可以使用不定参数的模板参数,最典型的就是tuple类了。其大致代码如下:

#include <iostream>template<typename... Values> class tuple;
template<> class tuple<> {};template<typename Head, typename... Tail>
class tuple<Head, Tail...>: private tuple<Tail...>
{typedef tuple<Tail...> inherited;public:tuple() {}tuple(Head v, Tail... vtail) : m_head(v), inherited(vtail...) {}Head& head() {return m_head;}inherited& tail() {return *this;}protected:Head m_head;
};int main(int argc, char *argv[]) 
{tuple<int, float, std::string> t(1, 2.3, "hello");std::cout << t.head() << " " << t.tail().head() << " " << t.tail().tail().head() << std::endl;return 0;
}

根据代码可以知道,tuple类继承除首之外的其他参数的子tuple类,以此类推,最终继承空参数的tuple类。继承关系可以表述为:

tuple<>↑
tuple<std::string>string "hello"↑
tuple<float, std::string>float 2.3↑
tuple<int, float, std::string>int 1

接下来考虑在内存中的分布,内存中先存储父类的变量成员,再保存子类的变量成员,也就是说,对象t按照内存分布来说;

┌─────────┐<---- 对象指针
|  hello  |
|─────────|
|  2.3    |
|─────────|
|  1      |
└─────────┘

这时候就可以知道下一句代码的含义了:

inherited& tail() {return *this;}

tail()函数返回的是父类对象,父类对象和子类对象的内存起始地址其实是一样的,因此返回*this,再强行转化为inherited类型。

当然,上面采用的是递归继承的方式,除此之外,还可以采用递归复合的方式:

template<typename... Values> class tup;
template<> class tup<> {};template<typename Head, typename... Tail>
class tup<Head, Tail...>
{typedef tup<Tail...> composited;public:tup() {}tup(Head v, Tail... vtail) : m_head(v), m_tail(vtail...) {}Head& head() {return m_head;}composited& tail() {return m_tail;}protected:Head m_head;composited m_tail;
};

两种方式在使用的过程中没有什么区别,但C++11中采用的是第一种方式(递归继承)。

在上面的例子中,取出tuple中的元素是一个比较复杂的操作,需要不断地取tail,最终取head才能获得。标准库的std::tuple,对此进行简化,还提供了一些其他的函数来进行对tuple的访问。例如:
 

#include <iostream>
#include <tuple>int main(int argc, char *argv[]) {std::tuple<int, float, std::string> t2(1, 2.3, "hello");std::get<0>(t2) = 4;                      // 修改tuple内的元素std::cout << std::get<0>(t2) << " " << std::get<1>(t2) << " " << std::get<2>(t2) << std::endl;    // 获取tuple内的元素auto t3 = std::make_tuple(2, 3.4, "World");         // make方法生成tuple对象std::cout << std::tuple_size<decltype(t3)>::value << std::endl;    // 获取tuple对象元素的个数std::tuple_element<1, decltype(t3)>::type f = 1.2;          // 获取tuple对象某元素的类型return 0;
}

相关阅读 

  • C++11相关知识点

相关文章:

【C++11】可变参数模板(函数模板、类模板)

在C11之前&#xff0c;类模板和函数模板只能含有固定数量的模板参数。C11增强了模板功能&#xff0c;允许模板定义中包含0到任意个模板参数&#xff0c;这就是可变参数模板。可变参数模板的加入使得C11的功能变得更加强大&#xff0c;而由此也带来了许多神奇的用法。 可变参数模…...

centos安装高版本cmake

之前centos版本为cmake version 2.8.12.2采用yum remove卸载后重装还是这个版本,看来centos下面就是这个最新了,这说明centos煞笔。于是自己下载cmake包,然后安装。 官方cmake链接地址(3.16)(其他版本自己找,链接给你了) 1,wget下载 2,解压: tar -zxf cmake-3.16.0.…...

重温一下C#的时间类型,并简单写一个定时器功能

&#x1f389;&#x1f389; 时间是一个非常抽象的概念&#xff0c;本篇文章我们不深究目前电脑上的时候是如何保持全网同步。主要是讲讲在使用C#编程语言里的时间类型。最后使用定时任务简单写一个提醒功能&#xff0c;比如&#xff1a;每天10点准时打开一次csdn首页&#xff…...

MYSQL查询语句执行顺序

SQL语句定义的顺序 (1) SELECT (2)DISTINCT <select_list> (3) FROM <left_table> (4) <join_type> JOIN <right_table> (5) ON <join_condition> (6) WHERE <where_condition> (7) GROUP BY <group_by_list> (8) WITH {C…...

总结:电容在电路35个基本常识

1 电压源正负端接了一个电容&#xff0c;与电路并联&#xff0c;用于整流电路时&#xff0c;具有很好的滤波作用&#xff0c;当电压交变时&#xff0c;由于电容的充电作用&#xff0c;两端的电压不能突变&#xff0c;就保证了电压的平稳。 当用于电池电源时&#xff0c;具有交流…...

Kroger EDI 855 采购订单确认报文详解

本文着重讲述Kroger EDI项目中&#xff0c;供应商发给Kroger的X12 855EDI 规范报文&#xff08;采购订单确认&#xff09;解读。 在此前的文章如何读懂X12报文中&#xff0c;我们对X12已经做了详细的介绍&#xff0c;大家可以以此为基础&#xff0c;深入了解855采购订单确认报…...

HANA SDA-远程数据源访问

我们需要把其他系统的数据拿过来&#xff0c;到BW里和财务的数据集成。 HANA SDA就是不复制数据&#xff0c;建立虚拟表&#xff08;virtual table&#xff09;来映射到远程数据源。通过这个虚拟表访问其他系统的数据。 对虚拟表的操作现在也可以查询&#xff0c;更新&#xff…...

【AUTOSAR】:OS-Hook

OS-Hook OS-HookPINIC类型1、Os_ErrKernelPanic1.1、Os_HookCallPanicHook1.1.1、OS_PANICHOOK1.1.1.1、Os_PanicHook1.1.1.2、Os_Hal_CoreFreezeOs_Hal_NOPOS-Hook 延伸阅读 延伸阅读 PINIC类型 1、Os_ErrKernelPanic...

Open3d入门

目录 点云数据 1 主成分分析 1.1 Method 1.2 Results 2 表面法线估计 2.1 Method 2.2 Results 3 体素网格下采样 3.1 Method 3.2 Results 点云数据 常用数据下载&#xff08;免积分&#xff09; 1 主成分分析 1.1 Method 对点云进行主成分分析&#xff08;PCA&…...

linux部署zookeeper

linux部署zookeeper 1、单机部署zk ZooKeeper服务器是用Java创建的&#xff0c;它需要在JVM上运行&#xff0c;所以需要使用JDK1.6及以上版本&#xff0c;一般都是jdk1.8。 选择自己安装本地的jdk&#xff0c;而不是centos自带的openjdk。 查看本地安装的jdk&#xff1a; j…...

Junit4升级Junit5汇总

Junit4升级Junit5汇总目录MockMvcBuildersUnnecessaryStubbingException目录 记录Junit4升级到Junit5中遇到的问题和结局方案 MockMvcBuilders 问题&#xff1a; 将Junit4的RunWith和Rule都改成ExtendWith后出现setup函数中MockMvcBuilders的参数不正确 ExtendWith({Spring…...

Axios二次封装和Api的解耦

目录 一、axios三种基本写法 二、axios的二次封装 三、Api的解耦 一、axios三种基本写法 1&#xff09;get方法&#xff08;是最简单的&#xff09;&#xff1a; 写法二&#xff1a; 2&#xff09;post&#xff1a; 3&#xff09;axios请求配置 默认是get请求&#xff0c;如…...

SpringAOP从入门到源码分析大全,学好AOP这一篇就够了(一)

文章目录系列文档索引一、认识AOP1、AOP的引入原因2、AOP常见使用场景日志场景统计场景安防场景性能场景3、AOP概念AOP 的概念Aspect 概念&#xff08;切面&#xff09;Join point 概念&#xff08;连接点&#xff09;Pointcut 概念&#xff08;切入点&#xff09;Advice 概念&…...

【单目标优化算法】樽海鞘群算法(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

手把手教你,解决C盘分区不足,C盘怎么扩大磁盘分区

由于在磁盘分区中&#xff0c;C盘是很重要的一个磁盘&#xff0c;为了保证C盘有足够的磁盘分区。其中扩大C盘分区很常见的操作之一。那么&#xff0c;C盘怎么扩大磁盘分区&#xff1f;在本文中&#xff0c;易我小编将全面地讲解C盘合并分区的方法。 一、为什么C盘怎么扩大磁盘分…...

Ethernet-APL——过程自动化的新黄金标准

| Ethernet-APL为终客户和设备制造商带来益处 Ethernet-APL&#xff08;Advanced Physical Layer&#xff0c;高级物理层&#xff09;是一种两线制以太网物理层&#xff0c;它使用了由IEEE 802.3cg所定义的10BASE-T1L&#xff0c;并采用了新的工艺制造规定&#xff0c;因此构成…...

LVGL Styles

LVGL StylesGet started按钮添加标签按钮添加风格滑动条值显示StylesSize stylesBackground stylesBorder stylesOutline stylesShadow stylesImage stylesArc stylesText stylesLine stylesGet started 按钮添加标签 /*** brief 按钮事件回调函数* param e */ void btn_eve…...

扬帆优配|联通港股创近两年新高!A股资源类股爆发,食品饮料领跌

今日上午&#xff0c;A股商场和港股商场均现较大起伏震动&#xff0c;临近上午收盘出现一波跳水&#xff0c;不过&#xff0c;到上午收盘&#xff0c;上证指数仍微涨0.10%&#xff0c;煤炭等资源类板块明显上涨。 港股商场上午走弱&#xff0c;科技股领跌。 沪指微涨0.10%资源…...

Win10+VS2019+Qt5.15.2下编译QCAD

一&#xff1a;官方说法&#xff1a;WindowsDownload and install a C compiler, for example:Visual Studio C Express or Visual Studio CommunityDownload and install Qt from qt.io (see supported platforms):Download for example the online installer fileqt-opensour…...

【微信小程序】原生微信小程序ts模板下引入vant weapp

之前一直是在普通项目下使用 vant weapp&#xff0c;这不最近学了ts&#xff0c;使用微信开发工具的tsless初始化项目&#xff0c;再引入 vant 时踩了好久坑&#xff0c;特来记录一下 前言 本文章适合微信开发工具的ts项目&#xff0c;指的是项目目录结构如下图 总结 从上图…...

es6 函数解构

对象的解构赋值是内部机制&#xff0c;先找回同名属性&#xff0c;再赋值给对应的变量&#xff0c;真正被赋值的是后者。 let node {type:Identifier,name:foo,loc:{start:{line:1,column:1},end:{line:1,column:4}},method:function(){console.log(method);},range:[0,3] };…...

c++第四课(基础c)——布尔变量

1.前言 好&#xff0c;今天我们来学布尔变量&#xff08;bool&#xff09;&#xff0c;开搞&#xff01; 2.正文 2.1布尔数据的定义值 布尔数据的定义值&#xff0c;是只有真和假 顺便提一句0是假&#xff0c;非0的数字都是真 不过为了简便 我们一般都用0和1 2.2布尔数…...

HTML 计算网页的PPI

HTML 计算网页的PPI vscode上安装live server插件&#xff0c;可以实时看网页预览 有个疑问&#xff1a; 鸿蒙density是按照类别写死的吗&#xff0c;手机520dpi 折叠屏426dpi 平板360dpi <html lang"en" data - overlayscrollbars - initialize><header&…...

Leetcode 2819. 购买巧克力后的最小相对损失

1.题目基本信息 1.1.题目描述 现给定一个整数数组 prices&#xff0c;表示巧克力的价格&#xff1b;以及一个二维整数数组 queries&#xff0c;其中 queries[i] [ki, mi]。 Alice 和 Bob 去买巧克力&#xff0c;Alice 提出了一种付款方式&#xff0c;而 Bob 同意了。 对于…...

游戏引擎学习第314天:将精灵拆分成多个层

回顾并为今天的工作做准备 我们今天继续昨天开始的工作&#xff0c;现在我们要回到渲染中处理 Z 值的最终环节。我们目前已经有一个我们认为还算合理的排序方式&#xff0c;虽然可能还需要在接下来的过程中进行一些调整&#xff0c;但总体上已经有了一个明确的方向。 我们已经…...

Rust 配置解析`serde` + `toml`

&#x1f980; Rust 配置解析&#xff1a;彻底搞懂 TOML、Option、Vec、derive 背后的原理 &#x1f4cc; 目录 什么是 TOML 文件&#xff1f;为什么要用 serde toml crate&#xff1f;结构体上 #[derive(...)] 是什么&#xff1f;配置中数组 [] 和表数组 [[...]] 怎么用&…...

[SC]SystemC在CPU/GPU验证中的应用(六)

SystemC在CPU/GPU验证中的应用(六) 摘要:下面分享50个逐步升级SystemC编程能力的示例及建议的学习路线图。您可以一次一批地完成它们——从前五个基础的例子开始,然后转向channels, TLM, bus models, simple CPU/GPU kernels等等。在每个阶段掌握之后,再进行下一组…...

MySQL 8.0:解析

引言 MySQL 8.0 作为里程碑版本&#xff0c;在功能、性能、安全性等维度进行了全面革新。以下从技术实现、应用场景和实践挑战三个层面&#xff0c;深度解析其核心特性变化&#xff1a; 一、架构级重构&#xff1a;数据字典与原子 DDL 1. 事务性数据字典 技术实现…...

react库:class-variance-authority

文章目录 前言一、cva 的核心作用二、代码逐层解析参数详解基础样式&#xff08;第一个参数&#xff09;&#xff1a;variant&#xff1a;定义颜色/风格变体&#xff08;如 default、destructive&#xff09;。size&#xff1a;定义尺寸变体&#xff08;如 sm、lg&#xff09;。…...

Java 文件操作 和 IO(4)-- Java文件内容操作(2)-- 字符流操作

Java 文件操作 和 IO&#xff08;4&#xff09;-- Java文件内容操作&#xff08;2&#xff09;-- 字符流操作 文章目录 Java 文件操作 和 IO&#xff08;4&#xff09;-- Java文件内容操作&#xff08;2&#xff09;-- 字符流操作观前提醒&#xff1a;1. Java中操作文件的简单介…...