当前位置: 首页 > news >正文

Python数据分析案例30——中国高票房电影分析(爬虫获取数据及分析可视化全流程)

案例背景

最近总看到《消失的她》票房多少多少,《孤注一掷》票房又破了多少多少.....

于是我就想自己爬虫一下获取中国高票房的电影数据,然后分析一下。

数据来源于淘票票:影片总票房排行榜 (maoyan.com)

爬它就行。

 


代码实现

首先爬虫获取数据:

数据获取

导入包

import requests; import pandas as pd
from bs4 import BeautifulSoup

 传入网页和请求头

url = 'https://piaofang.maoyan.com/rankings/year'
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36 Edg/116.0.1938.62'}
response1 = requests.get(url,headers=headers)
response.status_code


200表示获取网页文件成功

然后解析网页文件,获取电影信息数据

%%time
soup = BeautifulSoup(response.text, 'html.parser')
soup=soup.find('div', id='ranks-list')
movie_list = []for ul_tag in soup.find_all('ul', class_='row'):movie_info = {}li_tags = ul_tag.find_all('li')movie_info['序号'] = li_tags[0].textmovie_info['标题'] = li_tags[1].find('p', class_='first-line').textmovie_info['上映日期'] = li_tags[1].find('p', class_='second-line').textmovie_info['票房(亿)'] = f'{(float(li_tags[2].text)/10000):.2f}'movie_info['平均票价'] = li_tags[3].textmovie_info['平均人次'] = li_tags[4].textmovie_list.append(movie_info)

数据获取完成了! 查看字典数据:
 

movie_list

可以,很标准,没什么问题,然后把它变成数据框,查看前三行

movies=pd.DataFrame(movie_list)
movies.head(3)

对数据进行一定的清洗,我们看到上映日期里面的数据有“上映”两个字,我们要去掉,然后把它变成时间格式,票房,票价,人次都要变成数值型数据。

我们只取票房前250的电影,对应豆瓣250.,,,,中国票房250好叭

然后我们还需要从日期里面抽取年份和月份两列数据,方便后面分析。

#清洗
movies=movies.set_index('序号').loc[:'250',:]  
movies['上映日期']=pd.to_datetime(movies['上映日期'].str.replace('上映',''))
movies[['票房(亿)','平均票价','平均人次']]=movies.loc[:,['票房(亿)','平均票价','平均人次']].astype(float)
movies['年份']=movies['上映日期'].dt.year  ;   movies['月份']=movies['上映日期'].dt.month
movies.head(2)

数据处理完毕,开始画图分析!


画图分析

导入画图包

import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams ['font.sans-serif'] ='SimHei'               #显示中文
plt.rcParams ['axes.unicode_minus']=False  

 对票房排名前20的电影画柱状图

top_movies = movies.nlargest(20, '票房(亿)')
plt.figure(figsize=(7, 4),dpi=128)
ax = sns.barplot(x='票房(亿)', y='标题', data=top_movies, orient='h',alpha=0.5)
#plt.xticks(rotation=80, ha='center')# 在柱子上标注数值
for p in ax.patches:ax.annotate(f'{p.get_width():.2f}', (p.get_width(), p.get_y() + p.get_height() / 2.),va='center', fontsize=8, color='gray', xytext=(5, 0),textcoords='offset points')plt.title('票房前20的电影')
plt.xlabel('票房数量(亿)')
plt.ylabel('电影名称')
plt.tight_layout()
plt.show()

还不错,很好看,可以看到中国历史票房前20 的电影名称和他们的票房数量。

对平均票价和平均人次进行分析:
 

plt.figure(figsize=(7, 6),dpi=128)
# 绘制第一个子图:平均票价点图
plt.subplot(2, 2, 1)
sns.scatterplot(y='平均票价', x='年份', data=movies,c=movies['年份'],cmap='plasma')
plt.title('平均票价点图')
plt.ylabel('平均票价')
#plt.xticks([])plt.subplot(2, 2, 2)
sns.boxplot(y='平均票价', data=movies)
plt.title('平均票价箱线图')
plt.xlabel('平均票价')plt.subplot(2, 2, 3)
sns.scatterplot(y='平均人次', x='年份', data=movies,c=movies['年份'],cmap='plasma')
plt.title('平均人次点图')
plt.ylabel('平均人次')plt.subplot(2, 2, 4)
sns.boxplot(y='平均人次', data=movies)
plt.title('平均人次箱线图')
plt.xlabel('平均人次')
plt.tight_layout()
plt.show()

先看柱状图,可以看到平均票价和平均人次都是有一些离群点的,然后我们在左边画了他们和年份的的散点图,可以明细看到,随着年份越大,电影的平均人次越来越低,平均票价越来越高.....也就是最近的电影比起之前的电影来说,越来越贵,而且平均每场看的人越来越少......也侧面反映了我国电影业的一些“高票价”,‘幽灵剧场刷票房’ 等等乱象...

我注意到2000年之前有一个电影每场人次特别高,票价很低,它是什么电影我很好奇我就查看了一下:

movies[movies['年份']<2000]

原来是国民级别的《泰坦尼克号》,那没事了,名副实归。

不同年份的高票房电影数量:

plt.figure(figsize=(7, 3), dpi=128)
year_count = movies['年份'].value_counts().sort_index()
sns.lineplot(x=year_count.index, y=year_count.values, marker='o', lw=1.5, markersize=3)
plt.fill_between(year_count.index, 0, year_count, color='lightblue', alpha=0.8)
plt.title('不同年份高票房电影数量')
plt.xlabel('年份')
plt.ylabel('电影数量')
# 在每个数据点上标注数值
for x, y in zip(year_count.index, year_count.values):plt.text(x, y+0.2, str(y), ha='center', va='bottom', fontsize=8)plt.tight_layout()
plt.show()

可以看到,我国高票房的电影,从2010年开始高速增长,到2017年到达峰值,著名的《战狼2》就是2017年上映的,然后2018和2019略微下降,2020年断崖下跌,,为什么,懂得懂得,疫情原因嘛。

对高票房电影不同月份的占比百分比分析:

plt.figure(figsize=(4, 4),dpi=128)
month_count = movies['月份'].value_counts(normalize=True).sort_index()
# 绘制饼图
sns.set_palette("Set3")
plt.pie(month_count, labels=month_count.index, autopct='%.1f%%', startangle=140, counterclock=False,wedgeprops={'alpha': 0.9})
plt.axis('equal')  # 保证饼图是正圆形
plt.text(-0.3,1.2,'不同月份高票房电影数量',fontsize=8)
plt.tight_layout()
plt.show()

我们可以看到,高票房电影主要集中在2月,7月,12月,三个月份区间。

理由也很简单,2月春节,7月暑假,12月跨年.....电影都喜欢这三个时间段上映。


自定义评价指标

我们上面都是之间拿票房进行分析的,我们发现,票房高的电影真的是反映了看的人多嘛?它真的是受观众喜欢的好电影嘛?

数据有限,虽然我们无法剔除宣传,时间热点,导演,社会风气等等影响因素,但是我们可以把票价进行一定的控制。因为票房高的电影也有可能是票价过高造成的,所以我们用‘票房/平均票价’,然后和‘平均人次’进行一个加权求和。

票房/平均票价 表示看电影的人群量,给7成权重,平均人次 给一个3层的权重,然后都进行标准化统一数据单位,加起来就成为我们自己的评价指标:


为了方便标准化我们先导入一个机器学习库里面sklearn的标准化函数

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()

 计算指标:

movies['我的评价指标']=(movies['票房(亿)'].astype(float)/movies['平均票价'].astype(float))
data1=scaler.fit_transform(movies[['我的评价指标', '平均人次']])
movies['我的评价指标']=0.7*data1[:,0]+0.3*data1[:,1]
movies=movies.sort_values(by='我的评价指标',ascending=False)

画图查看:
 

my_top_movies = movies.nlargest(20, '我的评价指标')
plt.figure(figsize=(7, 4),dpi=128)
ax = sns.barplot(x='我的评价指标', y='标题', data=my_top_movies, orient='h',alpha=0.6,palette='rainbow_r')
#plt.xticks(rotation=80, ha='center')# 在柱子上标注数值
for p in ax.patches:ax.annotate(f'{p.get_width():.2f}', (p.get_width(), p.get_y() + p.get_height() / 2.),va='center', fontsize=8, color='gray', xytext=(5, 0),textcoords='offset points')plt.title('前20电影')
plt.xlabel('我的评价指标')
plt.ylabel('电影名称')
plt.tight_layout()
plt.show()

和之前的最高票房前20 的作对比,这样我们能比较哪些是票房过高的电影,哪些是可能被低估的电影。

def get_unique_elements(list1, list2):# 获取每个列表中的唯一元素set1 = set(list1) ; set2 = set(list2)unique_to_list1 = list(set1 - set2)unique_to_list2 = list(set2 - set1)common_elements = list(set1 & set2)return unique_to_list1, common_elements, unique_to_list2
票价过高的电影,确实是好电影,被低估的电影=get_unique_elements(top_movies['标题'].to_list(), my_top_movies['标题'].to_list())

 这个函数的作用是选出第一个列表特有的元素,两个列表共有的元素,第二个列表特有的元素。

若这个电影在票房前20里面,也在我们的评价指标前20里面,那么就是好电影。若它在在票房前20里面,不在我们的评价指标前20里面,那可能就是票价过高的“水分电影”。

print(f'票价过高的电影:{票价过高的电影},\n\n确实是好电影:{确实是好电影},\n\n低估的电影:{被低估的电影}')

票价过高的电影:['八佰', '我和我的家乡', '独行月球', '流浪地球2'],emmmm

这几个电影,我都没怎么深入了解就不评价了......


总结

本次演示了从数据爬虫获取,到清洗整理,再到计算和可视化分析的全流程,再多加点图和文字分析角度,加点模型,作为大多数的本科生的论文算是差不多的工作量了。

 

相关文章:

Python数据分析案例30——中国高票房电影分析(爬虫获取数据及分析可视化全流程)

案例背景 最近总看到《消失的她》票房多少多少&#xff0c;《孤注一掷》票房又破了多少多少..... 于是我就想自己爬虫一下获取中国高票房的电影数据&#xff0c;然后分析一下。 数据来源于淘票票&#xff1a;影片总票房排行榜 (maoyan.com) 爬它就行。 代码实现 首先爬虫获…...

科技资讯|苹果Vision Pro头显申请游戏手柄专利和商标

苹果集虚拟现实和增强现实于一体的头戴式设备 Vision Pro 推出一个月后&#xff0c;美国专利局公布了两项苹果公司申请的游戏手柄专利&#xff0c;其中一项的专利图如下图所示。据 PatentlyApple 报道&#xff0c;虽然专利本身并不能保证苹果公司会推出游戏手柄&#xff0c;但是…...

Compose学习 - remember、mutableStateOf的使用

一、需求 在显示界面中&#xff0c;数据变动&#xff0c;界面刷新是非常常见的操作&#xff0c;所以使用compose该如何实现呢&#xff1f; 二、remember、mutableStateOf的使用 我们可以借助标题的两个概念 remember、mutableStateOf来完成。这里先不写定义&#xff0c;定义…...

字符串哈希

字符串前缀哈希法 str "ABCABCDEHGJK" 预处理每一个前缀的哈希值,如 : h[0] 0; h[1] "A"的哈希值 h[2] "AB"的哈希值 h[3] "ABC"的哈希值 h[4] "ABCA"的哈希值 问题 : 如何定义一个前缀的哈希值 : 将字符串看…...

【python】【centos】使用python杀死进程后自身也会退出

问题 使用python杀死进程后自身程序也会退出&#xff0c;无法执行后边的代码 这样不行&#xff1a; # cmd " ps -ef | grep -v grep | grep -E task_pull_and_submit.py$|upgrade_system.py$| awk {print $2}"# pids os.popen(cmd).read().strip(\n).split(\n)# p…...

【ES系列】(一)简介与安装

首发博客地址 首发博客地址[1] 系列文章地址[2] 教学视频[3] 为什么要学习 ES? 强大的全文搜索和检索功能&#xff1a;Elasticsearch 是一个开源的分布式搜索和分析引擎&#xff0c;使用倒排索引和分布式计算等技术&#xff0c;提供了强大的全文搜索和检索功能。学习 ES 可以掌…...

opencv案例06-基于opencv图像匹配的消防通道障碍物检测与深度yolo检测的对比

基于图像匹配的消防通道障碍物检测 技术背景 消防通道是指在各种险情发生时&#xff0c;用于消防人员实施营救和被困人员疏散的通道。消防法规定任何单位和个人不得占用、堵塞、封闭消防通道。事实上&#xff0c;由于消防通道通常缺乏管理&#xff0c;导致各种垃圾&#xff0…...

练习2:88. 合并两个有序数组

这里写自定义目录标题 题目解体思路代码 题目 给你两个按非递减顺序排列的整数数组 nums1 和 nums2&#xff0c;另有两个整数 m和 n &#xff0c;分别表示 nums1 和 nums2中的元素数目。 请你合并nums2 到 nums1 中&#xff0c;使合并后的数组同样按非递减顺序排列。 注意&a…...

【代码随想录day23】不同路径

题目 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish” &#xff09;。 问总共有多少条不同的路径&#xff1f; 示…...

SpringBoot 博客网站

SpringBoot 博客网站 系统功能 登录注册 博客列表展示 搜索 分类 个人中心 文章分类管理 我的文章管理 发布文章 开发环境和技术 开发语言&#xff1a;Java 使用框架: SpringBoot jpa H2 Spring Boot是一个用于构建Java应用程序的开源框架&#xff0c;它是Spring框架的一…...

【分布式搜索引擎elasticsearch】

文章目录 1.elasticsearch基础索引和映射索引库操作索引库操作总结 文档操作文档操作总结 RestAPIRestClient操作文档 1.elasticsearch基础 什么是elasticsearch&#xff1f; 一个开源的分布式搜索引擎&#xff0c;可以用来实现搜索、日志统计、分析、系统监控等功能 什么是…...

wireshark 流量抓包例题

一、题目一(1.pcap) 题目要求&#xff1a; 1.黑客攻击的第一个受害主机的网卡IP地址 2.黑客对URL的哪一个参数实施了SQL注入 3.第一个受害主机网站数据库的表前缀&#xff08;加上下划线例如abc&#xff09; 4.第一个受害主机网站数据库的名字 看到题目SQL注入&#xff0c…...

【Axure视频教程】表格编号函数

今天教大家在Axure里如何使用表格编号函数&#xff0c;包括表格编号函数的基本原理、在需要翻页的中继器表格里如何正确使用该函数、函数作为条件的应用&#xff0c;包括让指定第几行的元件默认变色效果以及更新对应第几行内容的效果。该教程主要讲解表格编号函数&#xff0c;不…...

大数据-玩转数据-Flink定时器

一、说明 基于处理时间或者事件时间处理过一个元素之后, 注册一个定时器, 然后指定的时间执行. Context和OnTimerContext所持有的TimerService对象拥有以下方法: currentProcessingTime(): Long 返回当前处理时间 currentWatermark(): Long 返回当前watermark的时间戳 registe…...

Linux 操作系统实战视频课 - GPIO 基础介绍

文章目录 一、GPIO 概念说明二、视频讲解沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇我们将讲解 GPIO 。 一、GPIO 概念说明 ARM 平台中的 GPIO(通用输入/输出)是用于与外部设备进行数字输入和输出通信的重要硬件接口。ARM 平台的 GPIO 特性可以根据具体的芯…...

ChatGPT在医疗保健信息管理和电子病历中的应用前景如何?

ChatGPT在医疗保健信息管理和电子病历中有着广阔的应用前景&#xff0c;可以提高医疗保健行业的效率、准确性和可访问性。本文将详细讨论ChatGPT在医疗保健信息管理和电子病历中的应用前景&#xff0c;以及相关的益处和挑战。 ### 1. ChatGPT在医疗保健信息管理中的应用前景 …...

安防监控/视频存储/视频汇聚平台EasyCVR接入海康Ehome车载设备出现收流超时的原因排查

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。视频汇聚平台既具…...

【zookeeper】zookeeper监控指标查看

zookeeper 监控指标 日常工作中&#xff0c;我们有时候需要对zookeeper集群的状态进行检查&#xff0c;下面分享一些常用的方法。 zookeeper获取监控指标已知的有两种方式&#xff1a; 通过zookeeper自带的四字命令 &#xff08;four letter words command &#xff09;获取各…...

Flink 如何处理反压?

分析&回答 什么是反压&#xff08;backpressure&#xff09; 反压通常是从某个节点传导至数据源并降低数据源&#xff08;比如 Kafka consumer&#xff09;的摄入速率。反压意味着数据管道中某个节点成为瓶颈&#xff0c;处理速率跟不上上游发送数据的速率&#xff0c;而…...

JAVA基础-JDBC

本博客记录JAVA基础JDBC部分的学习内容 JDBC基本概念 JDBC : JAVA链接数据库&#xff0c;是JAVA链接数据库的技术的统称&#xff0c;包含如下两部分&#xff1a; 1. JAVA提供的JDBC规范&#xff08;即各种数据库接口&#xff09;存储在java.sql 和 javax.sql中的api 2. 各个数…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...

CSS | transition 和 transform的用处和区别

省流总结&#xff1a; transform用于变换/变形&#xff0c;transition是动画控制器 transform 用来对元素进行变形&#xff0c;常见的操作如下&#xff0c;它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器

拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件&#xff1a; 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...