当前位置: 首页 > news >正文

R语言图形绘制

(1)条形图

> barplot(c(1,2,4,2,6,4,3,5))

> barplot(c(1,2,4,2,6,4,3,5),horiz = TRUE)

 

#beside=TRUE 表示将多个组别的图形并排显示,使它们在水平方向上对齐
#而当 beside=FALSE(默认值)时,多个组别的图形会堆叠在一起
> data <- matrix(c(4, 5, 2, 6, 3, 7), nrow = 2)
> colnames(data) <- c("Group A", "Group B", "Group C")
> barplot(data, beside = TRUE)
> 
> dataGroup A Group B Group C
[1,]       4       2       3
[2,]       5       6       7

> library(vcd)
载入需要的程辑包:grid
> data("Arthritis")
> counts<-table(Arthritis$Improved)
#使lab可以旋转
> par(las=2)
> barplot(counts,horiz=TRUE,cex.names=0.8,names.arg=c("No improved","some improved","marked improved"))
> 

 (2)饼图

> par(mfrow=c(2,2))
> x<-c(10,12,4,16,8)
> lab<-c("US","UK","Australia","Germany","France")
> pie(x,lab,main)
> pie(x,lab,main="Simple Pie Chart")

> pct<-round(x/sum(x)*100)
> pct
[1] 20 24  8 32 16
> labl<-paste(lab,"",pct,"%",sep="")
> labl
[1] "US20%"       "UK24%"       "Australia8%"
[4] "Germany32%"  "France16%"  > pie(x,labl,col=rainbow(length(labl)),main="Pie Chart with Percentage")

> library(plotrix)
> pie3D(x,explode=0.1,main="3D Pie Chart")
#explode越大,那么饼图的间隙就越大

 

> fan.plot(x,labels=lab,main="Fan plot")

 

(3)直方图

> hist<-mtcars$mpg
> hist(x)

#在x轴上划分12组数据
hist(x,breaks=12,col="red",xlab="Miles Per Callon")

> x<-mtcars$mpg
> x[1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4[9] 22.8 19.2 17.8 16.4 17.3 15.2 10.4 10.4
[17] 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3
[25] 19.2 27.3 26.0 30.4 15.8 19.7 15.0 21.4
#如果freq=FALSE,那么直方图表现的是概率密度,也就是百分比
> hist(x,freq=FALSE,breaks=12,col="green",xlab="Mile Per Callon")

> hist(x,freq=FALSE,breaks=12,col="green",xlab="Mile Per Callon")
> rug(jitter(x))
> lines(density(x),col="red",lwd=2)

 

(4)plot

> x<-density(mtcars$mpg)
> plot(x)

> mtcars$mpg[1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4[9] 22.8 19.2 17.8 16.4 17.3 15.2 10.4 10.4
[17] 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3
[25] 19.2 27.3 26.0 30.4 15.8 19.7 15.0 21.4
> mtcars$cyl[1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4
[22] 8 8 8 8 4 4 4 8 6 8 4
> sm.density.compare(mtcars$mpg,mtcars$cyl,xlab="Mile per gallon")
> 

 

(5)箱线图

#mpg~cyl表示cyl对mpg的影响
> boxplot(mpg~cyl,data=mtcars,main="Car maileage data",xlab="Number of cylinders",ylab = "Miles per gallon")


若有更加复杂的绘图模型会实时更新,佬们可以实时关注!!💖💖💖

相关文章:

R语言图形绘制

&#xff08;1&#xff09;条形图 > barplot(c(1,2,4,2,6,4,3,5)) > barplot(c(1,2,4,2,6,4,3,5),horiz TRUE) #besideTRUE 表示将多个组别的图形并排显示&#xff0c;使它们在水平方向上对齐 #而当 besideFALSE&#xff08;默认值&#xff09;时&#xff0c;多个组别的…...

2023第七届蓝帽杯 初赛 web LovePHP

LovePHP 直接给了源码。 network查看到&#xff0c;PHP版本是7.4.33 题目要求我们GET一个my_secret.flag参数&#xff0c;根据PHP字符串解析特性&#xff0c;PHP需要将所有参数转换为有效的变量名&#xff0c;因此在解析查询字符串时&#xff0c;它会做两件事&#xff1a; 删…...

Pytorch 的基本概念和使用场景介绍

文章目录 一、基本概念1. 张量&#xff08;Tensor&#xff09;2. 自动微分&#xff08;Autograd&#xff09;3. 计算图&#xff08;Computation Graph&#xff09;4. 动态计算图&#xff08;Dynamic Computation Graph&#xff09;5. 变量&#xff08;Variable&#xff09; 二、…...

git 基础入门

Git基础入门 Git是一个分布式 版本管理系统&#xff0c;用于跟踪文件的变化和协同开发。 版本管理&#xff1a;理解成档案馆&#xff0c;记录开发阶段各个版本 分布式&集中式 分布式每个人都有一个档案馆&#xff0c;集中式只有一个档案馆。分布式每人可以管理自己的档案…...

openssl 生成自签名证书

1、openssl生成CA根证书 1.1、生成CA私钥 openssl genrsa -out root_ca.key 2048 注意&#xff1a;私钥必须妥善保管&#xff0c;既不能丢失&#xff0c;也不能泄露。如果发生丢失和泄露&#xff0c;必须马上重新 生成&#xff0c;以使旧的证书失效。 1.2、通过ca私钥生成pem格…...

微服务dubbo和nexus

微服务是一种软件开发架构风格&#xff0c;它将一个应用程序拆分成一组小型、独立的服务&#xff0c;每个服务都可以独立部署、管理和扩展。每个服务都可以通过轻量级的通信机制&#xff08;通常是 HTTP/REST 或消息队列&#xff09;相互通信。微服务架构追求高内聚、低耦合&am…...

uView1.0的Upload组件上传图片

<template><u-uploadref"uUpload":file-list"fileList"accept"image/jpeg,image/png" //允许选择图片文件:sizeType"sizeType":max-size"2 * 1024 * 1024" //限制上传的图片文件最大为 2Moversize"over…...

【LeetCode题目详解】第九章 动态规划part03 343. 整数拆分 96.不同的二叉搜索树 (day41补)

本文章代码以c为例&#xff01; 一、力扣第343题&#xff1a;整数拆分 题目&#xff1a; 给定一个正整数 n &#xff0c;将其拆分为 k 个 正整数 的和&#xff08; k > 2 &#xff09;&#xff0c;并使这些整数的乘积最大化。 返回 你可以获得的最大乘积 。 示例 1: 输…...

半导体制造常用软件工具总结

半导体制造常用软件工具总结 CIM&#xff1a;Computer Integrated Manufacturing 设备自动化&#xff0c;总称MES&#xff1a;Manufacturing Execution System 制造执行系统EAP&#xff1a;Equipment Automation Programming 设备自动化&#xff0c;是MES与设备的桥梁APC&…...

基于Python的IOS自动化测试环境搭建

文章目录 一、测试架构介绍1.1 WebDriverAgent原理分析1.2 tidevice原理分析二、环境安装2.1 iOS 设备安装 WebDriverAgent2.2 安装iTunes2.3 安装tidevice2.4 安装facebook-wda自动化三、操作流程四、Weditor的安装和使用一、测试架构介绍 以下为测试架构原理图 手机端的WDA…...

技术领导力实战笔记25

25&#xff5c;用心做好“鼓励式”管理 激发正能量 授权 分工作&#xff1a; 老人干新事&#xff0c;新人干老事&#xff0c;强者干难事&#xff0c;弱者干细事 新人干老事 所谓新人&#xff0c;是对业务产品不了解&#xff0c;对工作流程不清晰的岗位新人。对于新人来说&…...

设计模式-职责链+反射

文章目录 前言简单版本的职责链加反射职责链反射思路过程总结 前言 最近学习设计模式对于职责链的学习有了一些深入的了解故此有了这篇博客 简单版本的职责链加反射 职责链模式&#xff08;Chain of Responsibility Pattern&#xff09;和反射&#xff08;Reflection&#x…...

Middleware ❀ Kafka功能与使用详解

文章目录 1. 概述1.1. 消息队列1.2. 应用场景1.3. 工作模式1.4. 基础结构1.4.1. 结构组件1.4.2. 数据同步1.4.3. ACK机制1.4.4. 分区机制1.4.4.1. 使用Partition Key写入1.4.4.2. 轮询写入 - 默认规则1.4.4.3. 指定Partition写入 1.4.5. Offset偏移量1.4.5.1. 消息顺序性1.4.5.…...

python3.11教程1:python基础语法、程序控制、函数

文章目录 一、Python简介1.1 为什么学习python1.2 python安装与配置1.3 python解释器1.4 命令行参数1.4.1 sys.argv变量1.4.2 -c和-m选项 1.5 解释器的运行环境1.5.1 编码格式1.5.2 编码声明 二、Python基础语法2.1 行结构2.2 变量&#xff08;标识符&#xff09;2.3 字节串2.4…...

【C++】关于using namepace xxx 使用命名空间和冲突

官方定义 namespace是指 标识符的各种可见范围。命名空间用关键字namespace来定义。 命名空间是C的一种机制&#xff0c;用来把单个标识符下的大量有逻辑联系的程序实体组合到一起。此标识符作为此组群的名字。 基本使用 编译及执行命令&#xff1a; g test.cpp -o test ./…...

Linux常用命令——cupsenable命令

在线Linux命令查询工具 cupsenable 启动指定的打印机 补充说明 cupsenable命令用于启动指定的打印机。 语法 cupsenable(选项)(参数)选项 -E&#xff1a;当连接到服务器时强制使用加密&#xff1b; -U&#xff1a;指定连接服务器时使用的用户名&#xff1b; -u&#xff…...

基于Stable Diffusion的AIGC服饰穿搭实践

本文主要介绍了基于Stable Diffusion技术的虚拟穿搭试衣的研究探索工作。文章展示了使用LoRA、ControlNet、Inpainting、SAM等工具的方法和处理流程&#xff0c;并陈述了部分目前的实践结果。通过阅读这篇文章&#xff0c;读者可以了解到如何运用Stable Diffusion进行实际操作&…...

【 ARMv9 Cluster BUS QoS 配置】

文章目录 ARM Cluster QoS ARM Cluster QoS QoS&#xff08;Quality of Service&#xff0c;服务质量&#xff09;在 ARM 架构中&#xff0c;主要指的是一种机制&#xff0c;它可以控制和管理系统资源&#xff08;如内存、总线带宽等&#xff09;的使用&#xff0c;以满足各种…...

简单了解网络基本概念

目录 一、网络含义 二、什么是以太网&#xff1f; 三、网络分类 四、网络架构 五、数据传输方式 六、双工模式 一、网络含义 在实际生活中我们用传输介质把独立的终端设备相互连接起来就构成了网络。 二、什么是以太网&#xff1f; 以太网是一种网络通信协议标准&#…...

网络安全知识库

0x00 前言 本篇用来整理所有的零散的知识&#xff0c;作为一个技能树或者技能表来进行引导 CTF 加解密合集CTF Web合集 0x01 Http 1.http头 1.1 本地访问识别 如何伪造http头&#xff0c;让后端认为是本地访问...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

MyBatis中关于缓存的理解

MyBatis缓存 MyBatis系统当中默认定义两级缓存&#xff1a;一级缓存、二级缓存 默认情况下&#xff0c;只有一级缓存开启&#xff08;sqlSession级别的缓存&#xff09;二级缓存需要手动开启配置&#xff0c;需要局域namespace级别的缓存 一级缓存&#xff08;本地缓存&#…...

Ubuntu系统复制(U盘-电脑硬盘)

所需环境 电脑自带硬盘&#xff1a;1块 (1T) U盘1&#xff1a;Ubuntu系统引导盘&#xff08;用于“U盘2”复制到“电脑自带硬盘”&#xff09; U盘2&#xff1a;Ubuntu系统盘&#xff08;1T&#xff0c;用于被复制&#xff09; &#xff01;&#xff01;&#xff01;建议“电脑…...

渗透实战PortSwigger靶场:lab13存储型DOM XSS详解

进来是需要留言的&#xff0c;先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码&#xff0c;输入的<>当成字符串处理回显到页面中&#xff0c;看来只是把用户输…...