当前位置: 首页 > news >正文

4.1 链式栈StackT

C++关键词:内部类/模板类/头插

C++自学精简教程 目录(必读)

C++数据结构与算法实现(目录)

栈的内存结构

空栈:

有一个元素的栈:

多个元素的栈:

成员函数说明

0 clear 清空栈

clear 函数负责将栈的对内存释放,成员初始化为初始值,比如指针为空指针,计数成员变量赋0值。

1 copy 从另一个栈拷贝

copy 函数可以给 拷贝构造函数调用,也可以被 赋值操作调用。

由于拷贝构造函数发生在构造阶段,对象刚刚创建,不可能有内容,而赋值操作符就不一定了。

对象被赋值的时候,可能已经有元素了,所以这时候copy 内部需要先调用 clear 成员函数来清空自己管理的堆内存。让对象重新回到一个空的栈状态。

2 pop 弹出栈顶元素

pop 执行的时候,不需要检查栈是否为空。用户应该去调用 empty来检查栈是否为空。

或者用户确定调用pop的时候栈是不可能为空的,这样就避免了不必要的代码的执行。

这样做的注意目的是为了效率,类的接口各司其职,分工明确。

接口与测试用例

#include <iostream>
#include <iomanip>//------下面的代码是用来测试你的代码有没有问题的辅助代码,你无需关注------
#include <algorithm>
#include <cstdlib>
#include <iostream> 
#include <vector>
#include <utility>
using namespace std;
struct Record { Record(void* ptr1, size_t count1, const char* location1, int line1, bool is) :ptr(ptr1), count(count1), line(line1), is_array(is) { int i = 0; while ((location[i] = location1[i]) && i < 100) { ++i; } }void* ptr; size_t count; char location[100] = { 0 }; int line; bool is_array = false; bool not_use_right_delete = false; }; bool operator==(const Record& lhs, const Record& rhs) { return lhs.ptr == rhs.ptr; }std::vector<Record> myAllocStatistic; void* newFunctionImpl(std::size_t sz, char const* file, int line, bool is) { void* ptr = std::malloc(sz); myAllocStatistic.push_back({ ptr,sz, file, line , is }); return ptr; }void* operator new(std::size_t sz, char const* file, int line) { return newFunctionImpl(sz, file, line, false); }void* operator new [](std::size_t sz, char const* file, int line)
{return newFunctionImpl(sz, file, line, true);
}void operator delete(void* ptr) noexcept { Record item{ ptr, 0, "", 0, false }; auto itr = std::find(myAllocStatistic.begin(), myAllocStatistic.end(), item); if (itr != myAllocStatistic.end()) { auto ind = std::distance(myAllocStatistic.begin(), itr); myAllocStatistic[ind].ptr = nullptr; if (itr->is_array) { myAllocStatistic[ind].not_use_right_delete = true; } else { myAllocStatistic[ind].count = 0; }std::free(ptr); } }void operator delete[](void* ptr) noexcept { Record item{ ptr, 0, "", 0, true }; auto itr = std::find(myAllocStatistic.begin(), myAllocStatistic.end(), item); if (itr != myAllocStatistic.end()) { auto ind = std::distance(myAllocStatistic.begin(), itr); myAllocStatistic[ind].ptr = nullptr; if (!itr->is_array) { myAllocStatistic[ind].not_use_right_delete = true; } else { myAllocStatistic[ind].count = 0; }std::free(ptr); } }
#define new new(__FILE__, __LINE__)
struct MyStruct { void ReportMemoryLeak() { std::cout << "Memory leak report: " << std::endl; bool leak = false; for (auto& i : myAllocStatistic) { if (i.count != 0) { leak = true; std::cout << "leak count " << i.count << " Byte" << ", file " << i.location << ", line " << i.line; if (i.not_use_right_delete) { cout << ", not use right delete. "; }	cout << std::endl; } }if (!leak) { cout << "No memory leak." << endl; } }~MyStruct() { ReportMemoryLeak(); } }; static MyStruct my; void check_do(bool b, int line = __LINE__) { if (b) { cout << "line:" << line << " Pass" << endl; } else { cout << "line:" << line << " Ohh! not passed!!!!!!!!!!!!!!!!!!!!!!!!!!!" << " " << endl; exit(0); } }
#define check(msg)  check_do(msg, __LINE__);
//------上面的代码是用来测试你的代码有没有问题的辅助代码,你无需关注------//2020-07-09
template<typename T>
class Stack
{
public:Stack(void);Stack(const Stack& _stack);Stack& operator=(const Stack& _stack);~Stack(void);public:inline const T& top(void) const;inline bool empty(void) const;inline size_t size(void) const;void push(const T& _item);void pop(void);void clear(void);
private:void copy(const Stack& stack1);
private:struct CStackitem{public:CStackitem(void);CStackitem(const T& _data, CStackitem* next = nullptr);public:CStackitem(CStackitem& _item) = delete;// =  delete 表示禁止编译器生成默认版本的函数,主要用来禁止该类型对象拷贝CStackitem& operator=(CStackitem& _item) = delete;public:CStackitem* next = nullptr;//这里的初始化会在所有构造函数执行之前先执行,所以构造函数里就不用再对该成员初始化了T data;};
private:CStackitem m_head;//注意这里不是指针类型size_t m_size = 0;
};template<typename T>
Stack<T>::CStackitem::CStackitem(void)
//(1) your code 对1个成员变量初始化{
}template<typename T>
Stack<T>::CStackitem::CStackitem(const T& _data, CStackitem* _next):data(_data), next(_next)
{
}
template<typename T>
Stack<T>::Stack(void)
//(3) your code 对1个成员变量初始化{
}template<typename T>
Stack<T>::Stack(const Stack& _stack)
{//(4) your code  使用 copy 即可}template<typename T>
Stack<T>& Stack<T>::operator=(const Stack& _stack)
{//(5) your code 记得判断同一个对象赋值给自己return *this;
}template<typename T>
Stack<T>::~Stack(void)
{clear();
}
template<typename T>
bool Stack<T>::empty(void) const
{return m_size == 0;
}
template<typename T>
void Stack<T>::pop(void)
{//(9) your code 注意对象获取成员用"."操作符,指针获取成员用"->"操作符}
template<typename T>
void Stack<T>::clear(void)
{//(6) your code 可以利用 pop 来实现}
template<typename T>
void Stack<T>::copy(const Stack& from)
{//(7) your code 请先使用 clear ,再遍历链表来实现}
template<typename T>
size_t Stack<T>::size(void) const
{return m_size;
}
template<typename T>
void Stack<T>::push(const T& item)
{//(8) your code, 注意 这样写新创建的节点 CStackitem* p = new CStackitem(item, first);}
template<typename T>
const T& Stack<T>::top(void) const
{return m_head.next->data;
}int main(int argc, char** argv)
{Stack<int> stack1;check(stack1.size() == 0);stack1.push(1);check(stack1.size() == 1);auto stack2 = stack1;auto top = stack2.top();check(top == 1);check(stack2.size() == 1);stack1 = stack2;// 1 and 1stack1.push(2);// 2 1top = stack2.top();check(top == 1);check(stack1.size() == 2);check(stack1.top() == 2);stack1.clear();check(stack1.size() == 0 && stack1.empty());for (size_t i = 0; i < 10; i++){stack1.push(i);}while (!stack1.empty()){std::cout << stack1.top() << " ";stack1.pop();}cout << endl;check(stack1.size() == 0 && stack1.empty());//copy constructor{Stack<int> from;from.push(1);from.push(2);Stack<int> to(from);check(to.size() == 2);check(to.top() == 2);to.pop();check(to.top() == 1);to.pop();check(to.empty());}
}

输出:

line:155 Pass
line:157 Pass
line:160 Pass
line:161 Pass
line:165 Pass
line:166 Pass
line:167 Pass
line:169 Pass
9 8 7 6 5 4 3 2 1 0
line:180 Pass
line:188 Pass
line:189 Pass
line:191 Pass
line:193 Pass
Memory leak report:
No memory leak.

还没完

现在我们来思考一个更具价值的问题:栈有必要重新实现一次吗?答案是否定的

回忆我们之前的工作,我们实现了动态数组vector和链表list,这两个容器都支持在末尾增加和删除元素。

这正是栈的功能。

也就是说我们其实已经实现过栈了。

我们可以直接把动态数组和链表替换任何需要栈的地方,只不过类型的名字还不叫栈而异。

那么我们该怎么做才比较好呢?

那就是利用已经实现的容器包装出另一个容器。具体做法就是,假如我们打算用链表来实现栈(当然用数组实现也是类似的)。

可以把一个链表对象作为栈的成员变量。

对栈的操作都通过栈的成员函数转发给这个链表来做。

这种做法的好处:

(1)稳定!稳定!稳定

因为链表的实现中有大量的细节,很容易出错。如果我们也在链表中再来一遍的话,指不定又会写出bug来。这在正式开发环境中代价是极其高昂的。没有客户愿意接受一个经常喜欢出洋相的产品。

让测试人员从头开始测试一遍产品他们的工作量几乎要翻倍。这会极大的资源浪费。竞争对手可能已经跑在了前面。

原来对链表的测试用例已经把链表的稳定性保证了,所以现在的不确定性只是在栈对链表的包装上。

由于包装的代码就是接口转发,只要类型写对,接口名别调用错了就可以了,所以出问题的概率极大的降低了。

这种以基础容器制造其他容器的做法在软件开发中叫模块化封装

链表是一个模块,栈的是一个模块。用链表封装出了一个栈。

(2)减少开发工作量

由于使用了现成的代码,所以有些底层的代码直接拿来用,这就节省了工作量。提高了开发效率。

祝你好运!

答案在此

链式栈StackT(答案)_C++开发者的博客-CSDN博客

相关文章:

4.1 链式栈StackT

C关键词&#xff1a;内部类/模板类/头插 C自学精简教程 目录(必读) C数据结构与算法实现&#xff08;目录&#xff09; 栈的内存结构 空栈&#xff1a; 有一个元素的栈&#xff1a; 多个元素的栈&#xff1a; 成员函数说明 0 clear 清空栈 clear 函数负责将栈的对内存释放…...

算法练习(10):牛客在线编程10 贪心算法

package jz.bm;import java.util.ArrayList; import java.util.Arrays;public class bm10 {/*** BM95 分糖果问题*/public int candy (int[] arr) {int res 0;int n arr.length;int[] nums new int[n];//每个人都分配一个糖果for (int i 0; i < n; i) {nums[i] 1;}//从…...

Java8新特性1——函数式接口lambda表达式

Java8新特性1——函数式接口&lambda表达式 注&#xff1a;以下内容基于Java 8&#xff0c;所有代码都已在Java 8环境下测试通过 目录&#xff1a; Java8新特性1——函数式接口&lambda表达式方法引用Stream 1. 函数式接口 如果在一个接口中&#xff0c;有且只有一个抽…...

文本标注技术方案(NLP标注工具)

Doccano doccano 是一个面向人类的开源文本注释工具。它为文本分类、序列标记和序列到序列任务提供注释功能。您可以创建用于情感分析、命名实体识别、文本摘要等的标记数据。只需创建一个项目&#xff0c;上传数据&#xff0c;然后开始注释。您可以在数小时内构建数据集。 支持…...

03-使用一个不可变对象作为key,红黑树怎么比较大小?

使用一个不可变对象作为key&#xff0c;红黑树怎么比较大小&#xff1f; 答&#xff1a;Java 中的红黑树是通过左旋、右旋的方式来维护树的平衡性&#xff0c;而左旋、右旋又依赖于节点大小的比较。对于使用不可变对象作为key实际上是可以的&#xff0c;因为比较key的大小本身…...

2021江苏省赛热身赛 C Magic Rabbit(数形结合)

2021江苏省赛热身赛 C Magic Rabbit(数形结合) Magic Rabbit 非常好且巧妙地一道题。 大意&#xff1a;给出三种溶液 &#xff0c; 三种溶液分别含有不同浓度的 x &#xff0c;y 两种物质。 溶液x (mg/ml)y (mg/ml)溶液1x1y1溶液2x2y2溶液3x3y3 给出 Q 组询问 &#xff0c…...

AES加密(2):AES代码实现解析

在我的上一篇文章AES基础知识和计算过程中&#xff0c;大概介绍了AES(Rijndael)加密的整个过程。那么在这一篇文章中&#xff0c;就来看一下AES在代码中是如何实现的&#xff0c;也有助于我们理解其中的一些细节。 本篇文章所用的AES代码来源于Szymon Stefanek的开源C代码 文章…...

SpringBoot项目通过分词器生成词云

目录 前言一、词云是什么&#xff1f;二、使用步骤1.引入依赖2.application.yml3.Controller4.分词工具类4.词云生成工具类、支持输出文件和字节流 注意 前言 公司项目涉及到员工任务管理&#xff0c;需要从员工任务中获取任务信息生成个人词云图&#xff0c;可以把员工任务中…...

Nacos 配置管理及相关使用

文章目录 Nacos 配置管理一、统一配置管理1、在Nacos 中添加配置文件2、从微服务拉取配置3、配置实现步骤&#xff08;1&#xff09;引入 nacos-config 依赖&#xff08;2&#xff09;添加 bootstrap.yml&#xff08;4&#xff09;在 nacos 中添加配置 二、配置热更新1、配置热…...

重发布与路由策略

华子目录 重发布重发布条件重发布配置规则重发布名词配置命令ospf往rip重发布&#xff08;重发布动态&#xff09;静态往rip重发布&#xff08;重发布静态&#xff09;直连往rip重发布&#xff08;重发布直连&#xff09;rip往ospf重发布&#xff08;重发布动态&#xff09;静态…...

57. 插入区间(C++题解)

57. 插入区间 插入区间 给你一个无重叠的 &#xff0c;按照区间起始端点排序的区间列表。 在列表中插入一个新的区间&#xff0c;你需要确保列表中的区间仍然有序且不重叠&#xff08;如果有必要的话&#xff0c;可以合并区间&#xff09;。 示例 1&#xff1a; 输入&#x…...

【数据结构Java版】 初识泛型和包装类

目录 1.包装类 1.1基本数据类型以及它们所对应的包装类 1.2装箱和拆箱 1.3自动装箱和自动拆箱 2.什么是泛型 3.引出泛型 4.泛型类的使用 4.1语法 4.2示例 4.3类型推导 5.泛型是如何编译的 5.1擦除机制 5.2正确的写法 6.泛型的上届 6.1语法 6.2示例 …...

Spring中如何解决循环依赖问题的三种方法

什么是循环依赖问题 在 Spring 中&#xff0c;循环依赖问题指的是两个或多个 bean 之间相互依赖形成的闭环。具体而言&#xff0c;当 bean A 依赖于 bean B&#xff0c;同时 bean B 也依赖于 bean A&#xff0c;就形成了循环依赖。 循环依赖问题在 Spring 容器中是一个非常常…...

【ArcGIS Pro二次开发】(65):进出平衡SHP转TXT、TXT转SHP

最近一个小伙伴提了这么一个需求&#xff0c;需要把TXT和SHP进行互转。 这种TXT文件其实遇到了好几个版本&#xff0c;都有一点小差异。之前已经做过一个TXT转SHP的工具&#xff0c;但好像不适用。于是针对这个版本&#xff0c;做了互转的2个工具。 【SHP转TXT】 一、要实现的…...

Shell开发实践:服务器的磁盘、CPU、内存的占用监控

&#x1f3c6;作者简介&#xff0c;黑夜开发者&#xff0c;CSDN领军人物&#xff0c;全栈领域优质创作者✌&#xff0c;CSDN博客专家&#xff0c;阿里云社区专家博主&#xff0c;2023年6月CSDN上海赛道top4。 &#x1f3c6;数年电商行业从业经验&#xff0c;历任核心研发工程师…...

超详细 async和await 项目实战运用(附加文字解答+源码)

文章目录 问题描述async什么是 asyncasync 的作用async 的应用场景async 优点 await什么是 awaitawait 的作用await 的应用场景await 的优点async和 await结合使用 结束语 大家好&#xff01;又到了愉快的周末假期&#xff0c;今天是2023年9月3日|农历七月十九&#xff0c;我最…...

Maven入门教程(三):Maven语法

视频教程&#xff1a;Maven保姆级教程 Maven入门教程(一)&#xff1a;安装Maven环境 Maven入门教程(二)&#xff1a;idea/Eclipse使用Maven Maven入门教程(三)&#xff1a;Maven语法 Maven入门教程(四)&#xff1a;Nexus私服 Maven入门教程(五)&#xff1a;自定义脚手架 6.Mav…...

C++技术点,故事解析

语言的魅力 从人类诞生开始 &#xff0c;南方古猿到现代人类经历了非常多变化&#xff1b; 南方古猿到能人 有什么变化&#xff1f; 能人会使用工具&#xff0c;由于会使用工具 就可以获得肉类食物&#xff0c;当然只能吃一些动物腐肉 直到进化成直立人的晚期&#xff0c;在东…...

数据结构(Java实现)-字符串常量池与通配符

字符串常量池 在Java程序中&#xff0c;类似于&#xff1a;1&#xff0c; 2&#xff0c; 3&#xff0c;3.14&#xff0c;“hello”等字面类型的常量经常频繁使用&#xff0c;为了使程序的运行速度更快、更节省内存&#xff0c;Java为8种基本数据类型和String类都提供了常量池。…...

python强化学习--gym安装与使用

最近开始学习强化学习&#xff0c;第一步肯定是要学会安装和使用pym&#xff0c;原本以为很简单&#xff0c;事实上确实很简单&#xff0c;但是遇到一个小问题&#xff0c;就是安装gym之后&#xff0c;在应用的过程中&#xff0c;游戏界面没有显示出来&#xff0c;了解后才知道…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

webpack面试题

面试题&#xff1a;webpack介绍和简单使用 一、webpack&#xff08;模块化打包工具&#xff09;1. webpack是把项目当作一个整体&#xff0c;通过给定的一个主文件&#xff0c;webpack将从这个主文件开始找到你项目当中的所有依赖文件&#xff0c;使用loaders来处理它们&#x…...

网页端 js 读取发票里的二维码信息(图片和PDF格式)

起因 为了实现在报销流程中&#xff0c;发票不能重用的限制&#xff0c;发票上传后&#xff0c;希望能读出发票号&#xff0c;并记录发票号已用&#xff0c;下次不再可用于报销。 基于上面的需求&#xff0c;研究了OCR 的方式和读PDF的方式&#xff0c;实际是可行的&#xff…...

背包问题双雄:01 背包与完全背包详解(Java 实现)

一、背包问题概述 背包问题是动态规划领域的经典问题&#xff0c;其核心在于如何在有限容量的背包中选择物品&#xff0c;使得总价值最大化。根据物品选择规则的不同&#xff0c;主要分为两类&#xff1a; 01 背包&#xff1a;每件物品最多选 1 次&#xff08;选或不选&#…...

【AI News | 20250609】每日AI进展

AI Repos 1、OpenHands-Versa OpenHands-Versa 是一个通用型 AI 智能体&#xff0c;通过结合代码编辑与执行、网络搜索、多模态网络浏览和文件访问等通用工具&#xff0c;在软件工程、网络导航和工作流自动化等多个领域展现出卓越性能。它在 SWE-Bench Multimodal、GAIA 和 Th…...