当前位置: 首页 > news >正文

时序预测 | MATLAB实现CNN-LSTM卷积长短期记忆神经网络时间序列预测(风电功率预测)

时序预测 | MATLAB实现CNN-LSTM卷积长短期记忆神经网络时间序列预测(风电功率预测)

目录

    • 时序预测 | MATLAB实现CNN-LSTM卷积长短期记忆神经网络时间序列预测(风电功率预测)
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.MATLAB实现CNN-LSTM卷积长短期记忆神经网络时间序列预测(风电功率预测);
2.运行环境为Matlab2021b;
3.单个变量时间序列预测;
4.data为数据集,单个变量excel数据,MainCNN_LSTMTS.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MSE、RMSE、MAE、MAPE多指标评价;

程序设计

  • 完整源码和数据获取方式:私信博主回复MATLAB实现CNN-LSTM卷积长短期记忆神经网络时间序列预测(风电功率预测)
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

时序预测 | MATLAB实现CNN-LSTM卷积长短期记忆神经网络时间序列预测(风电功率预测)

时序预测 | MATLAB实现CNN-LSTM卷积长短期记忆神经网络时间序列预测(风电功率预测) 目录 时序预测 | MATLAB实现CNN-LSTM卷积长短期记忆神经网络时间序列预测(风电功率预测)预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1…...

WebSocket--技术文档--基本概念--《快速了解WebSocket协议》

阿丹: 不断学习新技术,丰富自己了解更多才能扩展更多世界可能。 官网 WebSocket首页、文档和下载 - HTML5开发相关 - OSCHINA - 中文开源技术交流社区 软件简介 WebSocket 是 HTML5 开始提供的一种浏览器与服务器间进行全双工通讯的网络技术。 WebS…...

flutter报错-cmdline-tools component is missing

安装完androidsdk和android studio后,打开控制台,出现错误 解决办法 找到自己安装android sdk的位置,然后安装上,并将下面的勾选上 再次运行 flutter doctor 不报错,出现以下画面 Doctor summary (to see all det…...

torch.bmm功能解读

bmm 是 batched matrix multiple 的简写,即批量矩阵乘法,矩阵是二维的,加上batch一个维度,因此该函数的输入必须是两个三维的 tensor,三个维度代表的含义分别是:(批量,行&#xff0c…...

如何使用Puppeteer进行金融数据抓取和预测

导语 Puppeteer是一个基于Node.js的库,可以用来控制Chrome或Chromium浏览器,实现网页操作、截图、PDF生成等功能。本文将介绍如何使用Puppeteer进行金融数据抓取和预测,以及如何使用亿牛云爬虫代理提高爬虫效果。 概述 金融数据抓取是指从…...

Linux下 Socket服务器和客户端文件互传

目录 1.项目描述 2.函数准备 2.1 gets函数 2.2 popen函数、fread函数 2.3 access 函数 2.4 exit 函数 2.5 strtok 函数 2.6 chdir函数 3.项目代码 3.1服务器代码 3.2客户端代码 4.问题总结 1.项目描述 基于Soket聊天服务器,实现服务器和客户端的文件传输。…...

Nginx详解 第五部分:Ngnix反向代理(负载均衡 动静分离 缓存 透传 )

Part 5 一、正向代理与反向代理1.1 正向代理简介1.2 反向代理简介 二、配置反向代理2.1 反向代理配置参数2.1.1 proxy_pass2.1.2 其余参数 2.2 配置实例:反向代理单台web服务器2.3 代理转发 三、反向代理实现动静分离四、缓存功能五、反向代理客户端的IP透传5.1 原理概述5.2 一…...

中国行政区域带坐标经纬度sql文件及地点获取经纬度方法

文章目录 前言一、如何获取某地的经纬度?1.1 搜索百度地图1.2 在下方找到地图开放平台1.3 下滑找到坐标拾取器1.4 使用 二、sql文件2.1 创建表2.2 插入数据 前言 当工作业务上需要涉及地图,给前端返回经纬度等场景,需要掌握区域经纬度的获取…...

[国产MCU]-W801开发实例-WiFi网络扫描

WiFi网络扫描 文章目录 WiFi网络扫描1、WiFi模块介绍2、WiFi扫描API介绍3、WiFi扫描实例本文将演示如何使用WiFi模块进行WiFi网络扫描。 1、WiFi模块介绍 W801的WiFi具有如下特性: 支持 GB15629.11-2006 IEEE802.11 b/g/n支持 Wi-Fi WMM/WMM-PS/WPA/WPA2/WPS支持 EDCA信道接入…...

SpringBoot使用kafka事务-消费者方

前言 在上一篇文章中,写到了如何在springboot中生产者如何使用kafka的事务,详情链接:Springboot使用kafka事务-生产者方 那么,这一篇就接着上篇所写的内容,讲解一下再springboot中消费者如何使用kafka的事务。 实现…...

C# 实现PictureBox从指定的文件夹内进行翻页操作

using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System...

Eureka 注册中心的使用

环境 springboot springcloud Eureka-Server注册中心服务端 pom.xml导入依赖 <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-netflix-eureka-server</artifactId><version>2.2.7.RELEAS…...

vue3 组件通信方式

文章目录 组件通信方式props自定义事件全局事件总线v-modeluseAttrsref与$parentprovide与injectpiniaslot 组件通信方式 props ​ 实现父子组件通信,在vue3中可以通过defineProps获取父组件传递的数据。且在组件内部不需要引入defineProps方法可以直接使用&#xff01; 父组…...

淘宝商品API使用示例:如何通过调用外部API来获取淘宝商品价格销量主图详情数据

淘宝上的商品信息量非常之大&#xff0c;商品的详情信息也很齐全。如何通过调用外部API来实现批量获取商品价格销量主图详情等信息呢&#xff1f;上周刚好完成了一个完整的淘宝商品采集项目&#xff0c;今天特来分享一下。 接口名称&#xff1a;item_get 请求地址&#xff1a…...

RK3568-android11-适配ov13850摄像头

硬件连接 主要分为两部分: mipi接口:传输摄像头数据 i2c接口:配置摄像头和对焦马达芯片寄存器相关驱动 |-- arch/arm64/boot/dts/rockchip DTS配置文件 |-- drivers/phy/rockchip/|-- phy-rockchip-mipi-rx.c mipi dphy 驱动 |-- drivers/media||-- platform/rockchip/isp1…...

基于Sider-chatgpt3.5-编写一个使用springboot2.5连接elasticsearch7的demo程序,包括基本的功能,用模板方法

下面是一个使用Spring Boot 2.5连接Elasticsearch 7的示例程序&#xff0c;包括基本的功能&#xff0c;使用模板方法&#xff1a; 首先&#xff0c;确保你的项目中添加了以下依赖&#xff1a; <dependency> <groupId>org.springframework.boot</groupId> &l…...

nodejs中如何使用Redis

Redis介绍&#xff1a; Redis 是一个开源的内存数据结构存储器&#xff0c;一般可以用于数据库、缓存、消息代理等&#xff0c;我们常在项目中用redis解决高并发、高可用、高可扩展、大数据存储等问题&#xff1b; 它本质上是一个NoSql&#xff08;非关系型数据库&#xff09;…...

golang append坑

查看如下代码输出 package mainimport "fmt"func main() {a : make([][]int, 0)b : make([]int, 0)b append(b, 1)a append(a, b)fmt.Println(a)b[0] 2fmt.Println(a) }输出&#xff1a; [[1]] [[2]]可以看出b改变之后&#xff0c;在a中也发生了改变&#xff0c…...

PaddleNLP使用Vicuna

LLaMA 模型 LLaMa 是一个大型语言模型&#xff0c;由 Meta 开源。它的全称是 Large Language Model Meta AI&#xff0c;参数量从 70 亿到 650 亿不等。例如&#xff0c;130 亿参数的 LLaMA 模型在大多数基准上可以胜过参数量达 1750 亿的 GPT-3&#xff0c;而且可以在单块 V1…...

jackson常用操作

#jackson常用操作 jackson序列化框架&#xff0c;一些常用的操作 依赖 <!--Jackson包--><dependency><groupId>com.fasterxml.jackson.core</groupId><artifactId>jackson-core</artifactId><version>2.15.2</version></de…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...