当前位置: 首页 > news >正文

【高阶数据结构】AVL树 {概念及实现;节点的定义;插入并调整平衡因子;旋转操作:左单旋,右单旋,左右双旋,右左双旋;AVL树的验证及性能分析}

AVL树

一、AVL树的概念

  • 二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:

  • AVL树:又被称为高度平衡搜索二叉树,当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  1. 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
  2. 它的左右子树都是AVL树

在这里插入图片描述

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在log_2 n,搜索时间复杂度O(log_2 n)


二、AVL树节点的定义

template <class K, class V>
struct AVLTreeNode{    AVLTreeNode<K,V> *_left; //指向左节点的指针       AVLTreeNode<K,V> *_right; //指向右节点的指针                    AVLTreeNode<K,V> *_parent; //指向父节点的指针                       pair<K,V> _kv; //存储元素键值对                   int _bf; //平衡因子balance factor            AVLTreeNode(const pair<K,V> &kv)    :_left(nullptr),    _right(nullptr),                                                                         _parent(nullptr),    _kv(kv),    _bf(0)                                                                        {}    
};                                                                                

三、AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为三步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子
  3. 如果节点所在的二叉树不再平衡,通过旋转恢复平衡。

在这里插入图片描述

template <class K, class V>
bool AVLTree<K,V>::Insert(const pair<K,V> &kv)
{//1.按照二叉搜索树的方式插入新节点if(_root == nullptr){_root = new Node(kv);return true;}Node *cur = _root;Node *parent = nullptr; //cur要向下一直遍历到null,所以要记录父节点的指针while(cur != nullptr){if(kv.first > cur->_kv.first)                    {parent = cur;cur = cur->_right;}else if(kv.first < cur->_kv.first){parent  = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if(kv.first > parent->_kv.first){                          parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent; //不要忘了修改父节点指针//2.调整节点的平衡因子while(parent!=nullptr) //只影响插入节点的所有祖先节点的平衡因子,parent不断向上一直遍历到根节点{//更新父节点的平衡因子//平衡因子=右树的高度-左树的高度if(cur == parent->_right){++parent->_bf; //插入右节点,bf++;      }else{--parent->_bf; //插入左节点,bf--;}//更新后检测双亲的平衡因子if(parent->_bf == 0){//由1/-1更新为0,说明以父节点为根的二叉树高度不变,无需继续向上调整。 break; }else if(abs(parent->_bf) == 1){//由0更新为1/-1,说明以父节点为根的二叉树高度增加了一层,需要继续向上调整。 parent = parent->_parent;cur = cur->_parent;}else if(abs(parent->_bf) == 2){//3.更新后为2/-2,说明parent所在的子树已经不平衡了,需要通过旋转恢复平衡。//......//下面的内容会有讲解↓↓↓}else{//除非代码有错,否则不可能有其他情况。assert(false);}}return true;
}

四、AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

4.1 左单旋

新节点插入较高右子树的右侧—右右:左单旋

在这里插入图片描述

解释:

  1. 上图在插入前,AVL树是平衡的。a,b,c是高度为h的AVL子树(h>=0)。新节点插入到60的右子树c使c树增加了一层,最终导致以30为根的二叉树不平衡。
  2. 要让30平衡,就需要将30向左旋转,将60提上去。让30的左子树增加一层,右子树减少一层。也就是让30做60的左子树。
  3. 如果60有左子树b,b树的根一定大于30小于60,刚好做30的右子树。旋转完成后,更新节点的平衡因子即可。
  4. 在旋转过程中,有以下几种情况需要考虑:
    1. 60节点的左子树b可能存在,也可能为空。
    2. 30可能是根节点,也可能是子树
    • 如果是根节点,旋转完成后,要更新根节点指针_root。
    • 如果是子树,可能是某个节点的左子树,也可能是右子树。要更新父节点的指针。
template <class K, class V>
void AVLTree<K,V>::RotateL(Node *parent){ //parent对应30Node *subR = parent->_right; //subR对应60Node *subRL = subR->_left; //subRL对应b树的根Node *ppNode = parent->_parent; //记录30的父节点,便于旋转后进行连接。//30和b树进行连接parent->_right = subRL;         if(subRL != nullptr) //b树可能为空{subRL->_parent = parent;}//30和60重新连接subR->_left = parent;parent->_parent = subR;//60和30的父节点进行连接//如果30是根节点,更新根节点指针_root指向60//if(_root == parent)if(ppNode == nullptr){_root = subR;}else{//60和30的父节点进行连接,先要确定30是父节点的左子树还是右子树if(ppNode->_left == parent){ppNode->_left = subR;}else{                  ppNode->_right = subR;}}subR->_parent = ppNode;//更新平衡因子,进过旋转60和30的平衡因子变为0subR->_bf = parent->_bf = 0;
}

4.2 右单旋

新节点插入较高左子树的左侧—左左:右单旋

在这里插入图片描述

详细解释参考左单旋。

template <class K, class V>
void AVLTree<K,V>::RotateR(Node *parent){Node *subL = parent->_left;Node *subLR = subL->_right;Node *ppNode = parent->_parent;parent->_parent = subL;subL->_right = parent;                                                                                                         parent->_left = subLR;if(subLR != nullptr)subLR->_parent = parent;//if(_root == parent)if(ppNode == nullptr){_root = subL;}else{if(ppNode->_left == parent){ppNode->_left = subL;}else{ppNode->_right = subL;}}subL->_parent = ppNode;subL->_bf = parent->_bf = 0;
}

旋转的作用:1. 平衡二叉树 2. 降低二叉树高度(恢复到插入之前的高度h+2)


4.3 左右双旋

新节点插入较高左子树的右侧—左右:先左单旋再右单旋

在这里插入图片描述

将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新。

左右双旋又能细分为3种情况:

  1. a,b,c,d是空树60是新增,引发双旋。
  2. 在b树插入新增,引发双旋。
  3. 在c树插入新增,引发双旋。

三种情况的双旋过程不变,只是平衡因子的更新需要分别处理:

在这里插入图片描述

双旋的关键在于更新平衡因子,30,60,90三个节点的平衡因子都在两次单旋过程中被错误的置为0(因为并没要满足单旋的条件)。要根据以上三种不同的情况重新调整三个节点的平衡因子。如何区分三种不同的情况?根据旋转之前60的平衡因子确认。

template <class K, class V>
void AVLTree<K,V>::RotateLR(Node *parent){ //parent对应90Node *subL = parent->_left; //subL对应30Node *subLR = subL->_right; //subLR对应60int bf = subLR->_bf; //记录旋转之前60的平衡因子RotateL(subL); //30左单旋RotateR(parent); //90右单旋//更新平衡因子subLR->_bf = 0; //60的平衡因子一定为0     switch(bf) //根据旋转之前60的平衡因子确认属于那种情况{case 1:subL->_bf = -1;parent->_bf = 0;break;case -1:subL->_bf = 0;parent->_bf = 1;break;case 0:subL->_bf = 0;parent->_bf = 0;break;default://除非代码有错,否则不可能有其他情况。assert(false);break;}
}

双旋最终的结果是将60作为二叉树的根,60的左右子树分别作了30和90的右左子树。30和90作了60的左右子树。


4.4 右左双旋

新节点插入较高右子树的左侧—右左:先右单旋再左单旋

在这里插入图片描述

详细解释参考左右双旋。

template <class K, class V>
void AVLTree<K,V>::RotateRL(Node *parent){Node *subR = parent->_right;Node *subRL = subR->_left;int bf = subRL->_bf;RotateR(subR);RotateL(parent);  //更新平衡因子                  subRL->_bf = 0;switch(bf){case 1:subR->_bf = 0;parent->_bf = -1;break;case -1:subR->_bf = 1;parent->_bf = 0;break;case 0:subR->_bf = 0;parent->_bf = 0;break;default://除非代码有错,否则不可能有其他情况。assert(false);break;}
}

双旋最终的结果是将60作为二叉树的根,60的左右子树分别作了30和90的右左子树。30和90作了60的左右子树。


4.5 分情况旋转

    else if(abs(parent->_bf) == 2){ //3.更新后为2/-2,说明parent所在的子树已经不平衡了,需要通过旋转恢复平衡。if(parent->_bf == 2 && cur->_bf == 1) //右右,左单旋{RotateL(parent);}else if(parent->_bf == 2 && cur->_bf == -1) //右左,右左双旋{RotateRL(parent);}else if(parent->_bf == -2 && cur->_bf == -1) //左左,右单旋{RotateR(parent);                              }else if(parent->_bf == -2 && cur->_bf == 1) //左右,左右双旋{RotateLR(parent);}else{//除非代码有错,否则不可能有其他情况。assert(false);}break; //注意:旋转完成后,原parent为根的子树个高度降低,已经平衡,不需要再向上更新。}

总结:
假如以parent为根的子树不平衡,即parent的平衡因子为2或者-2,分以下情况考虑:

  1. parent的平衡因子为2,说明parent的右子树高,设parent的右子树的根为subR

    • 当subR的平衡因子为1时(右右),执行左单旋

    • 当subR的平衡因子为-1时(右左),执行右左双旋

  2. parent的平衡因子为-2,说明parent的左子树高,设parent的左子树的根为subL

    • 当subL的平衡因子为-1是(左左),执行右单旋

    • 当subL的平衡因子为1时(左右),执行左右双旋

经过旋转后可以直接break;因为经过旋转,插入元素前后子树的高度未发生变化都是h+2,不需要再调整上层节点的平衡因子。一次插入最多一次旋转。

所以,AVL树插入元素的时间复杂度:找插入位置O(log_2N) + 更新平衡因子O(log_2N) + 旋转O(1) = O(log_2N)。


五、AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树
    如果中序遍历可得到一个有序的序列,就说明为二叉搜索树

  2. 验证其为平衡树

  • 每个节点子树高度差的绝对值不超过1

  • 节点的平衡因子是否计算正确

    template <class K, class V>
    bool AVLTree<K,V>::_Isbalance(Node *root){if(root == nullptr) return true; //注意,空树也是AVL树int lh = _Height(root->_left); //_Height返回二叉树的高度int rh = _Height(root->_right);int diff = rh-lh; //计算得到平衡因子                                                                                                              if(diff != root->_bf){cout << "Key: " << root->_kv.first << "bf: " << root->_bf << " 平衡因子异常" << endl;return false;}return abs(diff) < 2 && _Isbalance(root->_left) && _Isbalance(root->_right);
    }
    
  1. 测试用例

    //插入一两组序列测试
    void Test1(){//int arr[] = {16, 3, 7, 11, 9, 26, 18, 14, 15};int arr[] = {1,2,3,4,5,6,7,8,9,10};AVLTree<int, int> avl;for(auto e : arr){avl.Insert(make_pair(e, e));          }avl.Inorder();cout << "Isbalance: " << avl.Isbalance() << endl;
    }//插入10000个随机值测试
    void Test2(){srand(time(NULL));AVLTree<int, int> avl;const int N = 10000;for(int i = 0; i<N; ++i){int x = rand();avl.Insert(make_pair(x, i));}cout << "Isbalance: " << avl.Isbalance() << endl;
    }
    

六、AVL树的删除(了解)

AVL树节点的删除步骤如下:

  1. 在AVL树中找到要删除的节点。
  2. 如果要删除的节点是叶子节点,直接删除即可。
  3. 如果要删除的节点只有一个子节点,先使前驱节点指向该节点的子节点,然后删除该节点。
  4. 如果要删除的节点有两个子节点,需要找到该节点的替换节点(即该节点右子树中最小的节点或左子树中最大的节点),然后交换与替换节点的值,最后删除替换节点。
  5. 在删除节点后,需要更新从该节点到根节点路径上所有节点的平衡因子,并进行平衡调整,使得整棵树重新满足AVL树的性质。

删除操作的平衡调整方法和AVL树的插入操作相似,但在实现时需要注意一些细节上的差异。需要注意的是,删除操作可能会导致多个节点的平衡因子发生变化,因此需要一直向上循环更新和平衡调整,直到根节点。具体实现大家可以参考《算法导论》或《数据结构-用面向对象方法与C++描述》殷人昆版。


七、AVL树的性能

  • AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即log_2 (N)

  • 但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多;更差的是在删除时,有可能一直要让旋转持续到根的位置。

  • 因此,如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树。但一个结构经常修改,就不太适合。

相关文章:

【高阶数据结构】AVL树 {概念及实现;节点的定义;插入并调整平衡因子;旋转操作:左单旋,右单旋,左右双旋,右左双旋;AVL树的验证及性能分析}

AVL树 一、AVL树的概念 二叉搜索树虽可以缩短查找的效率&#xff0c;但如果数据有序或接近有序二叉搜索树将退化为单支树&#xff0c;查找元素相当于在顺序表中搜索元素&#xff0c;效率低下。因此&#xff0c;两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明…...

Netty—FuturePromise

Netty—Future&Promise 一、JDK原生 Future二、Netty包下的 Future三、Promise1、使用Promise同步获取结果2、使用Promise异步获取结果.3、使用Promise同步获取异常 - sync & get4、使用Promise同步获取异常 - await5、使用Promise异步获取异常 在异步处理时&#xff0…...

固定资产卡片乱怎么管理

固定资产卡片是记录公司固定资产信息的重要工具&#xff0c;如果管理不善&#xff0c;容易造成卡片混乱、数据错误等问题。 为了避免这种情况的发生&#xff0c;可以采取以下措施&#xff1a;  建立完善的资产管理制度&#xff0c;明确固定资产的分类、标准和使用情况&#x…...

AutoHotkey(AHK)脚本,自动截图当前屏幕并发送给微信窗口

前提先安装好 AutoHotkey &#xff0c;本脚本依赖AutoHotkey 环境 首先 &#xff0c;设置微信的快捷键 执行代码如下&#xff1a; Loop {SendInput, {Alt down}s{Alt up}Sleep, 2000 ; 等待2秒; 双击鼠标左键Click, 2Sleep, 1000 ; 等待1秒SendInput, {Alt down}a{Alt up}Sl…...

Golang - go build打包文件

Go编译打包文件 1、简单打包 程序 main1.go&#xff1a; package mainimport "fmt"func main() {fmt.Println("Hello World!") } 打包&#xff1a; # 在linux服务上执行下面的3个命令 # linux平台,生成main1可执行程序 CGO_ENABLED0 GOOSlinux GOARCHam…...

Java的归并排序

不爱生姜不吃醋⭐️⭐️⭐️ 如果本文有什么错误的话欢迎在评论区中指正 与其明天开始&#xff0c;不如现在行动&#xff01; 文章目录 &#x1f334;前言&#x1f334;一.归并排序1.概念2.时间复杂度3.代码实现 &#x1f334;二、小和问题1.概念2.举例3.代码实现 &#x1f334…...

B. The Walkway Codeforces Round 893 (Div. 2)

Problem - B - Codeforces 题目大意&#xff1a;小明在数轴上要从1走到n&#xff0c;其中某些坐标上有一些饼干店&#xff0c;共m个&#xff0c;小明身上也有无限多的饼干&#xff0c;它首先一定会在1的位置吃一个饼干&#xff0c;在每个饼干店的位置会吃一个&#xff0c;在前…...

第四篇 DirectShow 采集调用结构关系

第一篇: DirectShow视频采集_会头痛的可达鸭的博客-CSDN博客 一、GraphBuilder 1、IFilterGraph2、IGraphBuilder、ICaptureGraphBuiler2 (1)、CLSID IFilterGraph CLSID_FilterGraphIFilterGraph2 CLSID_CaptureGraphBuilderIGraphBuilder CL…...

2605. 从两个数字数组里生成最小数字

文章目录 Tag题目来源题目解读解题思路方法一&#xff1a;枚举比较法方法二&#xff1a;集合的位运算表示法 写在最后 Tag 【贪心】【位运算】【数组】 题目来源 2605. 从两个数字数组里生成最小数字 题目解读 给定两个各自只包含数字 1 到 9 的两个数组&#xff0c;每个数组…...

服务器发送事件Server-sent events详解与示例

Server-sent events 服务端进行数据推送除了WebSocket之外&#xff0c;还可以使用Server-Send-Event方案。 与 WebSocket不同的是&#xff0c;服务器发送事件是单向的。数据消息只能从服务端到发送到客户端&#xff08;如用户的浏览器&#xff09;。这使其成为不需要从客户端…...

SOLIDWORKS 多实体的建模方式

SOLIDWORKS多实体是SOLIDWORKS中一个非常有用的功能。在SOLIDWORKS中&#xff0c;对于模型的设定通常被大家所熟知的有以下几种类型&#xff1a;零件、装配体以及工程图。 其实还有一种划分&#xff0c;就是多实体。严格意义上来说&#xff0c;多实体既不属于零件也不属于装配体…...

NSSCTF web 刷题记录1

文章目录 前言题目[GXYCTF 2019]禁止套娃方法一方法二 [NCTF 2019]Fake XML cookbook[NSSRound#7 Team]ec_RCE[NCTF 2018]Flask PLUS 前言 今天是2023.9.3&#xff0c;大二开学前的最后一天。老实说ctf的功力还是不太够做的题目太少&#xff0c;新学期新气象。不可急于求成&am…...

遥感指数数据库

目前遥感指数多种多样&#xff0c;那怎么针对不同的应用领域选择合适的植被指数&#xff1f;不同卫星又有哪些可以反演的指数&#xff1f; Henrich等人开发了Index Database(网址&#xff1a;https://www.indexdatabase.de/)&#xff0c;总结了目前主流的遥感指数&#xff0c;…...

如何让insert程序速度快,可以试试联合SQL(insert 和 select 一起使用)?

查询添加可选择SQL执行&#xff0c;速度远超程序执行 insert 和 select案例 insert into 表1(列1,列2,列3,...) select 列1,列2,列3,...from表2(GROUP BY 列)116511 条数据 耗时45秒&#xff0c; 如果是程序查询然后再insert&#xff0c;则需要30分钟左右&#xff01;&#x…...

IP地址、网关、网络/主机号、子网掩码关系

一、IP地址 IP地址组成 IP地址分为两个部分&#xff1a;网络号和主机号 &#xff08;1&#xff09;网络号:标识网段&#xff0c;保证相互连接的两个网段具有不同的标识。 &#xff08;2&#xff09;主机号:标识主机&#xff0c;同一网段内&#xff0c;主机之间具有相同的网…...

使用skvideo.io.vread读取avi视频,报错“No way to determine width or height from video...”

问题描述&#xff1a; 一开始安装sk-video&#xff0c;在使用skvideo.io.vread读取avi视频&#xff0c;报错“No way to determine width or height from video. Need -s in inputdict. Consult documentation on I/O.” 解决方案&#xff1a; 1. 卸载sk-video pip uninsta…...

Nomad 系列-安装

系列文章 Nomad 系列文章 Nomad 简介 开新坑&#xff01;近期算是把自己的家庭实验室环境初步搞好了&#xff0c;终于可以开始进入正题研究了。 首先开始的是 HashiCorp Nomad 系列&#xff0c;欢迎阅读。 关于 Nomad 的简介&#xff0c;之前在 大规模 IoT 边缘容器集群管…...

网络版五子棋C++实现

目录 1.项目介绍 2.开发环境 3.核心技术 4.环境搭建 5.WebSocketpp介绍 5.1WebSocketpp是什么 5.2为什么使用WebSocketpp 5.3原理解析&#xff1a; 5.4WebSocketpp主要特性 6.WebSocketpp使用 7.JsonCpp使用 8.MySQL API 9.项目模块设计以及流程图 10.封装日志宏…...

项目招标投标公众号小程序开源版开发

项目招标投标公众号小程序开源版开发 以下是一个招标投标公众号小程序的功能列表&#xff1a; 用户注册与登录&#xff1a;用户可以注册账号并登录公众号小程序。项目发布&#xff1a;用户可以发布招标项目的详细信息&#xff0c;包括项目名称、招标单位、项目描述、招标要求…...

华为OD机试-机器人走迷宫

题目描述 机器人走一个迷宫,给出迷宫的x和y(x*y的迷宫)并且迷宫中有障碍物,输入k表示障碍物有k个,并且会将障碍物的坐标挨个输入. 机器人从0,0的位置走到x,y的位置并且只能向x,y增加的方向走,不能回退. 如代码类注释展示的样子,#表示可以走的方格,0代表障碍,机器人从0,0的位置…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践

作者&#xff1a;吴岐诗&#xff0c;杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言&#xff1a;融合数据湖与数仓的创新之路 在数字金融时代&#xff0c;数据已成为金融机构的核心竞争力。杭银消费金…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能

1. 开发环境准备 ​​安装DevEco Studio 3.1​​&#xff1a; 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK ​​项目配置​​&#xff1a; // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...

群晖NAS如何在虚拟机创建飞牛NAS

套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...

LangFlow技术架构分析

&#x1f527; LangFlow 的可视化技术栈 前端节点编辑器 底层框架&#xff1a;基于 &#xff08;一个现代化的 React 节点绘图库&#xff09; 功能&#xff1a; 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...