当前位置: 首页 > news >正文

pytorch-构建卷积神经网络

构建卷积神经网络

  • 卷积网络中的输入和层与传统神经网络有些区别,需重新设计,训练模块基本一致
    import torch
    import torch.nn as nn
    import torch.optim as optim
    import torch.nn.functional as F
    from torchvision import datasets,transforms 
    import matplotlib.pyplot as plt
    import numpy as np
    %matplotlib inline

    首先读取数据

  • 分别构建训练集和测试集(验证集)
  • DataLoader来迭代取数据
    # 定义超参数 
    input_size = 28  #图像的总尺寸28*28
    num_classes = 10  #标签的种类数
    num_epochs = 3  #训练的总循环周期
    batch_size = 64  #一个撮(批次)的大小,64张图片# 训练集
    train_dataset = datasets.MNIST(root='./data',  train=True,   transform=transforms.ToTensor(),  download=True) # 测试集
    test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor())# 构建batch数据
    train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
    test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)

    卷积网络模块构建

  • 一般卷积层,relu层,池化层可以写成一个套餐
  • 注意卷积最后结果还是一个特征图,需要把图转换成向量才能做分类或者回归任务
    class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Sequential(         # 输入大小 (1, 28, 28)nn.Conv2d(in_channels=1,              # 灰度图out_channels=16,            # 要得到几多少个特征图kernel_size=5,              # 卷积核大小stride=1,                   # 步长padding=2,                  # 如果希望卷积后大小跟原来一样,需要设置padding=(kernel_size-1)/2 if stride=1),                              # 输出的特征图为 (16, 28, 28)nn.ReLU(),                      # relu层nn.MaxPool2d(kernel_size=2),    # 进行池化操作(2x2 区域), 输出结果为: (16, 14, 14))self.conv2 = nn.Sequential(         # 下一个套餐的输入 (16, 14, 14)nn.Conv2d(16, 32, 5, 1, 2),     # 输出 (32, 14, 14)nn.ReLU(),                      # relu层nn.Conv2d(32, 32, 5, 1, 2),nn.ReLU(),nn.MaxPool2d(2),                # 输出 (32, 7, 7))self.conv3 = nn.Sequential(         # 下一个套餐的输入 (16, 14, 14)nn.Conv2d(32, 64, 5, 1, 2),     # 输出 (32, 14, 14)nn.ReLU(),             # 输出 (32, 7, 7))self.out = nn.Linear(64 * 7 * 7, 10)   # 全连接层得到的结果def forward(self, x):x = self.conv1(x)x = self.conv2(x)x = self.conv3(x)x = x.view(x.size(0), -1)           # flatten操作,结果为:(batch_size, 32 * 7 * 7)output = self.out(x)return output

    准确率作为评估标准

    def accuracy(predictions, labels):pred = torch.max(predictions.data, 1)[1] rights = pred.eq(labels.data.view_as(pred)).sum() return rights, len(labels) 

    训练网络模型

    # 实例化
    net = CNN() 
    #损失函数
    criterion = nn.CrossEntropyLoss() 
    #优化器
    optimizer = optim.Adam(net.parameters(), lr=0.001) #定义优化器,普通的随机梯度下降算法#开始训练循环
    for epoch in range(num_epochs):#当前epoch的结果保存下来train_rights = [] for batch_idx, (data, target) in enumerate(train_loader):  #针对容器中的每一个批进行循环net.train()                             output = net(data) loss = criterion(output, target) optimizer.zero_grad() loss.backward() optimizer.step() right = accuracy(output, target) train_rights.append(right) if batch_idx % 100 == 0: net.eval() val_rights = [] for (data, target) in test_loader:output = net(data) right = accuracy(output, target) val_rights.append(right)#准确率计算train_r = (sum([tup[0] for tup in train_rights]), sum([tup[1] for tup in train_rights]))val_r = (sum([tup[0] for tup in val_rights]), sum([tup[1] for tup in val_rights]))print('当前epoch: {} [{}/{} ({:.0f}%)]\t损失: {:.6f}\t训练集准确率: {:.2f}%\t测试集正确率: {:.2f}%'.format(epoch, batch_idx * batch_size, len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.data, 100. * train_r[0].numpy() / train_r[1], 100. * val_r[0].numpy() / val_r[1]))
    当前epoch: 0 [0/60000 (0%)]	损失: 2.300918	训练集准确率: 10.94%	测试集正确率: 10.10%
    当前epoch: 0 [6400/60000 (11%)]	损失: 0.204191	训练集准确率: 78.06%	测试集正确率: 93.31%
    当前epoch: 0 [12800/60000 (21%)]	损失: 0.039503	训练集准确率: 86.51%	测试集正确率: 96.69%
    当前epoch: 0 [19200/60000 (32%)]	损失: 0.057866	训练集准确率: 89.93%	测试集正确率: 97.54%
    当前epoch: 0 [25600/60000 (43%)]	损失: 0.069566	训练集准确率: 91.68%	测试集正确率: 97.68%
    当前epoch: 0 [32000/60000 (53%)]	损失: 0.228793	训练集准确率: 92.85%	测试集正确率: 98.18%
    当前epoch: 0 [38400/60000 (64%)]	损失: 0.111003	训练集准确率: 93.72%	测试集正确率: 98.16%
    当前epoch: 0 [44800/60000 (75%)]	损失: 0.110226	训练集准确率: 94.28%	测试集正确率: 98.44%
    当前epoch: 0 [51200/60000 (85%)]	损失: 0.014538	训练集准确率: 94.78%	测试集正确率: 98.60%
    当前epoch: 0 [57600/60000 (96%)]	损失: 0.051019	训练集准确率: 95.14%	测试集正确率: 98.45%
    当前epoch: 1 [0/60000 (0%)]	损失: 0.036383	训练集准确率: 98.44%	测试集正确率: 98.68%
    当前epoch: 1 [6400/60000 (11%)]	损失: 0.088116	训练集准确率: 98.50%	测试集正确率: 98.37%
    当前epoch: 1 [12800/60000 (21%)]	损失: 0.120306	训练集准确率: 98.59%	测试集正确率: 98.97%
    当前epoch: 1 [19200/60000 (32%)]	损失: 0.030676	训练集准确率: 98.63%	测试集正确率: 98.83%
    当前epoch: 1 [25600/60000 (43%)]	损失: 0.068475	训练集准确率: 98.59%	测试集正确率: 98.87%
    当前epoch: 1 [32000/60000 (53%)]	损失: 0.033244	训练集准确率: 98.62%	测试集正确率: 99.03%
    当前epoch: 1 [38400/60000 (64%)]	损失: 0.024162	训练集准确率: 98.67%	测试集正确率: 98.81%
    当前epoch: 1 [44800/60000 (75%)]	损失: 0.006713	训练集准确率: 98.69%	测试集正确率: 98.17%
    当前epoch: 1 [51200/60000 (85%)]	损失: 0.009284	训练集准确率: 98.69%	测试集正确率: 98.97%
    当前epoch: 1 [57600/60000 (96%)]	损失: 0.036536	训练集准确率: 98.68%	测试集正确率: 98.97%
    当前epoch: 2 [0/60000 (0%)]	损失: 0.125235	训练集准确率: 98.44%	测试集正确率: 98.73%
    当前epoch: 2 [6400/60000 (11%)]	损失: 0.028075	训练集准确率: 99.13%	测试集正确率: 99.17%
    当前epoch: 2 [12800/60000 (21%)]	损失: 0.029663	训练集准确率: 99.26%	测试集正确率: 98.39%
    当前epoch: 2 [19200/60000 (32%)]	损失: 0.073855	训练集准确率: 99.20%	测试集正确率: 98.81%
    当前epoch: 2 [25600/60000 (43%)]	损失: 0.018130	训练集准确率: 99.16%	测试集正确率: 99.09%
    当前epoch: 2 [32000/60000 (53%)]	损失: 0.006968	训练集准确率: 99.15%	测试集正确率: 99.11%
    

相关文章:

pytorch-构建卷积神经网络

构建卷积神经网络 卷积网络中的输入和层与传统神经网络有些区别,需重新设计,训练模块基本一致 import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torchvision import datasets,transforms impor…...

点云从入门到精通技术详解100篇-点云滤波算法及单木信息提取(续)

目录 3.3 点云滤波算法原理概述 3.3.1 坡度滤波算法 3.3.2 基于不规则三角网滤波 3.3.3 数学形态学滤波...

Gartner发布中国科技报告:数据编织和大模型技术崭露头角

近日,全球知名科技研究和咨询机构Gartner发布了关于中国数据分析与人工智能技术的最新报告。报告指出,中国正迎来数据分析与人工智能领域的蓬勃发展,预计到2026年,将有超过30%的白领工作岗位重新定义,生成式人工智能技…...

java八股文面试[数据库]——explain

使用 EXPLAIN 关键字可以模拟优化器来执行SQL查询语句,从而知道MySQL是如何处理我们的SQL语句的。分析出查询语句或是表结构的性能瓶颈。 MySQL查询过程 通过explain我们可以获得以下信息: 表的读取顺序 数据读取操作的操作类型 哪些索引可以被使用 …...

Kafka3.0.0版本——增加副本因子

目录 一、服务器信息二、启动zookeeper和kafka集群2.1、先启动zookeeper集群2.2、再启动kafka集群 三、增加副本因子3.1、增加副本因子的概述3.2、增加副本因子的示例3.2.1、创建topic(主题)3.2.2、手动增加副本存储 一、服务器信息 四台服务器 原始服务器名称原始服务器ip节点…...

升级iOS 17出现白苹果、不断重启等系统问题怎么办?

iOS 17发布后了,很多果粉都迫不及待的将iphone/ipad升级到最新iOS17系统,体验新系统功能。 但部分果粉因硬件、软件的各种情况,导致升级系统后出现故障,比如白苹果、不断重启、卡在系统升级界面等等问题。 如果遇到了这些系统问题…...

6. `Java` 并发基础之`ReentrantReadLock`

前言:随着多线程程序的普及,线程同步的问题变得越来越常见。Java中提供了多种同步机制来确保线程安全,其中之一就是ReentrantLock。ReentrantLock是Java中比较常用的一种同步机制,它提供了一系列比synchronized更加灵活和可控的操…...

float浮动布局大战position定位布局

华子目录 布局方式普通文档流布局浮动布局(浮动主要针对与black,inline元素)float属性浮动用途浮动元素父级高度塌陷 position属性定位篇相对定位(relative为属性值,配合left属性,和top属性使用&#xff09…...

算法 数据结构 递归插入排序 java插入排序 递归求解插入排序算法 如何用递归写插入排序 插入排序动图 插入排序优化 数据结构(十)

1. 插入排序(insertion-sort): 是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入 算法稳定性: 对于两个相同的数,经过…...

OpenCV(二十二):均值滤波、方框滤波和高斯滤波

目录 1.均值滤波 2.方框滤波 3.高斯滤波 1.均值滤波 OpenCV中的均值滤波(Mean Filter)是一种简单的滤波技术,用于平滑图像并减少噪声。它的原理非常简单:对于每个像素,将其与其周围邻域内像素的平均值作为新的像素值…...

二叉树的递归遍历和非递归遍历

目录 一.二叉树的递归遍历 1.先序遍历二叉树 2.中序遍历二叉树 3.后序遍历二叉树 二.非递归遍历(栈) 1.先序遍历 2.中序遍历 3.后序遍历 一.二叉树的递归遍历 定义二叉树 #其中TElemType可以是int或者是char,根据要求自定 typedef struct BiNode{TElemType data;stru…...

JDK17:未来已来,你准备好了吗?

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…...

K8s和Docker

Kubernetes(简称为K8s)和Docker是两个相关但又不同的技术。 一、Docker 1、Docker是一种容器化平台,用于将应用程序及其依赖项打包成可移植的容器。 2、Docker容器可以在任何支持Docker的操作系统上运行 好处:提供了一种轻量级…...

使用物理机服务器应该注意的事项

使用物理机服务器应该注意的事项 如今云计算的发展已经遍布各大领域,尽管现在的云服务器火遍全网,但是仍有一些大型企业依旧选择使用独立物理服务器,你知道这是为什么吗?壹基比小鑫来告诉你吧。 独立物理服务器托管业务适合大中…...

py脚本解决ArcGIS Server服务内存过大的问题

在一台服务器上,使用ArcGIS Server发布地图服务,但是地图服务较多,在发布之后,服务器的内存持续处在95%上下的高位状态,导致服务器运行状态不稳定,经常需要重新启动。重新启动后重新进入这种内存高位的陷阱…...

Go语言Web开发入门指南

Go语言Web开发入门指南 欢迎来到Go语言的Web开发入门指南。Go语言因其出色的性能和并发支持而成为Web开发的热门选择。在本篇文章中,我们将介绍如何使用Go语言构建简单的Web应用程序,包括路由、模板、数据库连接和静态文件服务。 准备工作 在开始之前…...

保姆级教程——VSCode如何在Mac上配置C++的运行环境

vscode官方下载: 点击官网链接,下载对应的pkg,安装打开; https://code.visualstudio.com/插件安装 点击箭头所指插件商店按钮,yyds; 下载C/C 插件; ![外链图片转存 下载CodeLLDB插件&#x…...

Java 操作FTP服务器进行下载文件

用Java去操作FTP服务器去做下载,本文章里面分为单个下载和批量下载,批量下载只不过多了一层循环,为了方便参考,我代码都贴出来了。 不管单个下载还是多个,一定要记得,远程服务器的直接写文件夹路径&#xf…...

物理机服务器应该注意的事

物理机服务器应该注意的事 1、选址 服务器是个非常重要的硬件产品,对机房的也是有一定的要求的,比如温度、安全性,噪音、电源稳定性等等问题都需要解决!但是不是每个人都会选择自己建立一个机房,毕竟各方面加起来的成本都太高。这…...

信息化发展24

信息技术的发展 1 )在计算机软硬件方面, 计算机硬件技术将向超高速、超小型、平行处理、智能化的方向发展, 计算机硬件设备的体积越来越小、速度越来越高、容量越来越大、功耗越来越低、可靠性越来越高。 2 )计算机软件越来越丰富…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...

深度学习习题2

1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) ​遍历字符串​:通过外层循环逐一检查每个字符。​遇到 ? 时处理​: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: ​与…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 🍺 最新版brew安装慢到怀疑人生?别怕,教你轻松起飞! 最近Homebrew更新至最新版,每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...