当前位置: 首页 > news >正文

GPT与BERT模型

        NLP任务的核心逻辑是“猜概率”的游戏。BERT和GPT都是基于预训练语言模型的思想,通过大量语料训练得到语言模型。两种模型都是基于Transformer模型。

        Bert 类似于Transformer的Encoder部分,GPT类似于Transformer的Decoder部分。两者最明显的在结构上的差异为Multi-Head-Attention和Masked Multi-Head-Attention。

  • BERT:双向 预训练语言模型+fine-tuning(微调)

        BERT是基于Transformer网络架构和预训练语言模型提出的。在不同语言任务上达到最先进的水平,展示了预训练语言模型对于自然语言理解任务的巨大潜力。

        BERT分为预训练和微调两部分,预训练是BERT模型的基础部分,使用大量的文本来训练语言模型。预训练时BERT模型会学习语言知识,如词汇、语法、句子结构等,预训练是为了让BERT模型有足够的语言能力处理不同的自然语言任务;微调过程是在预训练模型的基础上,使用少量标注数据调整模型参数。

BERT更适用于自然语言理解任务:

        问答系统:在问答系统中用来理解问题并生成答案。

        句子相似度比较:比较两个句子之间的相似程度。

        文本分类:对文本进行分类。

        情感分析:对文本进行情感分析。

        命名实体识别:识别文本中的命名实体。

Bert 使用填空的方式完成预训练,随机盖住一些输入的文字,被mask的部分是随机决定的。

第一种方法,用一个特殊的符号替换句子中的一个词, MASK 标记来表示特殊符号,作为一个新字,这个字完全是一个新词,它不在字典里,代表mask了原文。另外一种方法是随机把某一个字换成另一个字。两种方法方法随机使用,BERT 训练时,向BERT输入一个句子,先随机决定哪一部分的汉字被mask,mask后输入一个序列,把BERT的相应输出看作是另一个序列,在输入序列中寻找mask部分的相应输出,这个向量通过一个Linear transform,输入向量将与一个矩阵相乘,在做softmax,输出一个分布,一个很长的向量,包含要处理的每个汉字,每个字对应一个分数。mask的字符类似标签,用one-hot vector 表示这个字符,使输出和one-hot vector之间的交叉熵损失最小。BERT 是预测被MASK的内容,在训练中,在BERT后添加一个线性模型一起训练,预测被MNASK的字符。

  • GPT:自回归 预训练语言模型+Prompting(指示/提示)

        起源于对传统预训练语言模型(ELMO\ULMFit)的改进和升级,采用Transformer架构,使用预训练+微调的方式实现语言理解和生成。GPT预训练数据来源于网络文本数据。模型学习了基本的语言知识和结构,再在特定任务上微调,模型根据特定任务的需要来学习相关的知识。

        GPT主要具体应用:文本生成、文本自动完成、语言翻译、对话生成、摘要生成

        GPT 的任务是预测后面的序列,相同大小数据集时Bert 会更好,如果预训练数据很大,GPT网络训练是不需要标注的,适于超大数据量的情况的特点。

     

GPT与BERT训练的不同:

  • GPT使用的是Transformer模型;BERT使用的是双向Transformer模型。
  • GPT的预训练使用大量的网络文本数据;BERT的预训练使用Wikipedia和BooksCorpus。
  • GPT预训练采用语言模型的方法,通过预测下一个词来学习语言模型;BERT预训练过程中采用了双向预测的方法,即通过预测句子中丢失的词来学习语言模型。
  • GPT微调时,需要指定输入输出的语言模型任务;BERT微调时可应用在多种任务上。

参考:

关于ChatGPT:GPT和BERT的差别(易懂版) - 知乎

相关文章:

GPT与BERT模型

NLP任务的核心逻辑是“猜概率”的游戏。BERT和GPT都是基于预训练语言模型的思想,通过大量语料训练得到语言模型。两种模型都是基于Transformer模型。 Bert 类似于Transformer的Encoder部分,GPT类似于Transformer的Decoder部分。两者最明显的在结构上的差…...

2023-09-06力扣每日一题-摆烂暴力

链接: [1123. 最深叶节点的最近公共祖先](https://leetcode.cn/problems/form-smallest-number-from-two-digit-arrays/) 题意: 如题 解: 今天搞一手暴力,按层存,按层取,直到只取到一个 实际代码&…...

【Flutter】Flutter 使用 timego 将日期转换为时间描述

【Flutter】Flutter 使用 timego 将日期转换为时间描述 文章目录 一、前言二、安装与基本使用三、如何添加新的语言四、如何覆盖现有的语言或添加自定义消息五、完整示例六、总结 一、前言 你好!我是小雨青年,今天我要为你介绍一个非常实用的 Flutter 包…...

并发容器11

一 JDK 提供的并发容器总结 JDK 提供的这些容器大部分在 java.util.concurrent 包中。 ConcurrentHashMap: 线程安全的 HashMap CopyOnWriteArrayList: 线程安全的 List,在读多写少的场合性能非常好,远远好于 Vector. ConcurrentLinkedQueue: 高效的并…...

Java8实战-总结22

Java8实战-总结22 使用流数值流原始类型流特化数值范围数值流应用:勾股数 使用流 数值流 可以使用reduce方法计算流中元素的总和。例如,可以像下面这样计算菜单的热量: int calories menu.stream().map(Dish::getcalories).reduce(0, Int…...

matlab 实现点云ICP 配准算法

一、算法步骤 (1)在目标点云P中取点集pi∈P; (2)找出源点云Q中的对应点集qi∈Q,使得||qi-pi||=min; (3)计算旋转矩阵R和平移矩阵t,使得误差函数最小; (4)对pi使用上一步求得的旋转矩阵R和平移矩阵t进行旋转和平移变换,的到新的对应点集pi’={pi’=Rpi+t,pi∈P};…...

python提取word文本和word图片

提取文本 docx只支持docx格式,所以如果想读取doc需要另存为docx格式即可 import docx # pip3 install python-docx doc docx.Document(three.docx) for paragraph in doc.paragraphs:print(paragraph.text)提取图片 import zipfile import os, re # docx本质上…...

iOS开发Swift-9-SFSymbols,页面跳转,view屏幕比例,启动页-和风天气AppUI

1.创建项目 2.设置好测试机型,App显示名称,以及关闭横向展示. 3.下载SF Symbols. https://developer.apple.com/sf-symbols/ 右上角搜索 search ,可以找到很多系统自带图标.选择喜欢的图标,拷贝图标的名字. 插入一个Button,在Image中粘贴图标名称并选择,即可将Button变成想要的…...

代码优化工具-测试程序执行时间-IDEAdebug+StopWatch

参考: [技巧]IDEA的debugStopWatch监测程序运行时间 添加链接描述 1创建类StopWatchExpand import lombok.extern.slf4j.Slf4j;import org.springframework.util.StopWatch;import java.text.NumberFormat;/*** 检测程序片段运行时间拓展** author sdevil507* cr…...

力扣每日一题---2594. 修车的最少时间

文章目录 思路解题方法复杂度Code 思路 请注意&#xff0c;能力值越低&#xff0c;修车越快&#xff0c;应该翻译成「排名」&#xff0c;排名越靠前&#xff0c;修车越快。&#xff09;根据题意可以知道r * n * n < t 的&#xff0c;所以可以利用数学知识进行改变公式&#…...

【jvm】运行时数据区

目录 一、运行时数据区一、作用二、说明三、线程共用与私有区域 一、运行时数据区 一、作用 1.内存是非常重要的系统资源&#xff0c;是硬盘和CPU 的中间仓库及桥梁&#xff0c;承载着操作系统和应用程序的实时运行。JVM内存布局规定了Java在运行过程中内存申请、分配、管理的策…...

SpringMVC相对路径和绝对路径

1.相对地址与绝对地址定义 在jsp&#xff0c;html中使用的地址&#xff0c;都是在前端页面中的地址&#xff0c;都是相对地址 地址分类&#xff1a;&#xff08;1&#xff09;&#xff0c;绝对地址&#xff0c;带有协议名称的是绝对地址&#xff0c;http://www.baidu.com&…...

IIS perl python cbrother php脚本语言配置及简单测试样例程序

上篇笔记写了 IIS 配置 CGI&#xff0c; IIS CGI配置和CGI程序FreeBasic, VB6, VC 简单样例_Mongnewer的博客-CSDN博客 这篇在IIS上配置一些脚本语言。为了操作方便&#xff0c;每种语言在站点下分设文件夹。 1. IIS perl配置 Perl CGI方式是曾经流行的做法。先下载一个开源…...

Oracle Scheduler中日期表达式和PLSQL表达式的区别

参考文档&#xff1a; Database Administrator’s Guide 29.4.5.4 Differences Between PL/SQL Expression and Calendaring Syntax Behavior There are important differences in behavior between a calendaring expression and PL/SQL repeat interval. These differenc…...

Java设计模式:一、六大设计原则-06:依赖倒置原则

文章目录 一、定义&#xff1a;依赖倒置原则二、模拟场景&#xff1a;依赖倒置原则三、违背方案&#xff1a;依赖倒置原则3.1 工程结构3.2 抽奖系统**3.2.1 定义抽奖用户类**3.2.2 抽奖控制 3.3 单元测试 四、改善代码&#xff1a;依赖倒置原则4.1 工程结构4.2 抽奖控制改善4.2…...

信息系统数据同步解决方案

实施数据同步解决方案时&#xff0c;重要的是确保数据同步是安全的、可靠的&#xff0c;并且能够适应系统变化。定期测试和监控数据同步过程&#xff0c;以确保其稳定运行&#xff0c;并随着需求的变化进行适当的调整和优化。 应用场景&#xff1a;信息系统A和信息系统B实现员…...

LRU算法 vs Redis近似LRU算法

LRU(Least Recently Use)算法&#xff0c;是用来判断一批数据中&#xff0c;最近最少使用算法。它底层数据结构由Hash和链表结合实现&#xff0c;使用Hash是为了保障查询效率为O(1)&#xff0c;使用链表保障删除元素效率为O(1)。 LRU算法是用来判断最近最少使用到元素&#xf…...

浅析ARMv8体系结构:异常处理机制

文章目录 概述异常类型中断终止Abort复位Reset系统调用 异常处理流程异常入口异常返回异常返回地址 堆栈选择 异常向量表异常向量表的配置 同步异常解析相关参考 概述 异常处理指的是处理器在运行过程中发生了外部事件&#xff0c;导致处理器需要中断当前执行流程转而去处理异…...

Golang开发--Goroutine的使用

Go 语言天生支持并发编程&#xff0c;提供了丰富的原语和工具来编写并发程序。Goroutine 是 Go 语言中的轻量级执行单位。它们是由 Go 运行时&#xff08;runtime&#xff09;管理的&#xff0c;并且能够在单个线程上运行成千上万个 Goroutine。创建 Goroutine 非常高效&#x…...

【Linux】package ‘python-yaml‘ has no installation candidate 如何解决

要解决此问题&#xff0c;可以尝试以下几个步骤&#xff1a; 确保系统已经更新到最新版本。可以使用以下命令进行系统更新&#xff1a; sudo apt update sudo apt upgrade确保您的软件源列表中包含了正确的软件源。可以使用以下命令编辑软件源列表&#xff1a; sudo nano /etc/…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...