<深度学习基础> Batch Normalization
Batch Normalization批归一化
BN优点
- 减少了人为选择参数。在某些情况下可以取消dropout和L2正则项参数,或者采取更小的L2正则项约束参数;
- 减少了对学习率的要求。现在我们可以使用初始很大的学习率或者选择了较小的学习率,算法也能够快速训练收敛;
- 破坏原来的数据分布,一定程度上缓解过拟合;
- 减少梯度消失,加快收敛速度,提高训练精度。
步骤
下面给出BN 算法在训练时的过程
输入:上一层输出结果 X = x 1 , x 2 , . . . , x m X={x_1,x_2,...,x_m} X=x1,x2,...,xm,学习参数 γ , β \gamma,\beta γ,β;
算法流程:
(1)计算上一层输出数据的均值
μ β = 1 m ∑ i = 1 m x i \mu_{\beta}=\frac{1}{m} \sum_{i=1}^m x_i μβ=m1i=1∑mxi
其中, m m m 是此次训练样本batch的大小。
(2)计算上一层输出数据的标准差
σ β 2 = 1 m ∑ i = 1 m ( x i − μ β ) 2 \sigma_{\beta}^2=\frac{1}{m} \sum_{i=1}^m (x_i-\mu_{\beta})^2 σβ2=m1i=1∑m(xi−μβ)2
(3)归一化处理,得到
x ˆ i = x i + μ β σ β 2 + ϵ \^x_i=\frac{x_i+\mu_{\beta}}{\sqrt{\sigma_{\beta}^2}+\epsilon} xˆi=σβ2+ϵxi+μβ
其中 ϵ \epsilon ϵ是为了避免分母为0 而加进去的接近于0 的很小值;
(4)重构,对经过上面归一化处理得到的数据进行重构,得到
y i = γ x ˆ i + β y_i=\gamma \^x_i + \beta yi=γxˆi+β
其中, γ , β \gamma,\beta γ,β为可学习参数。
注:上述是BN训练时的过程,但是当在推理时,往往只是输入一个样本,没有所谓的均值 μ β \mu_{\beta} μβ和标准差 σ β 2 \sigma_{\beta}^2 σβ2。此时,均值 μ β \mu_{\beta} μβ是计算所有batch的 μ β \mu_{\beta} μβ值的平均值得到,标准差 σ β 2 \sigma_{\beta}^2 σβ2采用每个batch的 σ β 2 \sigma_{\beta}^2 σβ2的无偏估计得到。
相关文章:
<深度学习基础> Batch Normalization
Batch Normalization批归一化 BN优点 减少了人为选择参数。在某些情况下可以取消dropout和L2正则项参数,或者采取更小的L2正则项约束参数;减少了对学习率的要求。现在我们可以使用初始很大的学习率或者选择了较小的学习率,算法也能够快速训…...
Ubuntu yolov5 环境配置
查看Ubuntu版本 $ cat /proc/version Linux version 5.4.0-150-generic (builddbos03-amd64-012) (gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntu1~18.04)) #167~18.04.1-Ubuntu SMP Wed May 24 00:51:42 UTC 2023虚拟机磁盘扩容 因为在环境搭建过程中遇到了磁盘空间不足的问题&a…...
【自执行闭包JS逆向】某网站登录MD5加密分析
文章目录 一、写在前面二、抓包分析三、加密函数分析 一、写在前面 最近工作比较忙,不过还是在督促自己利用有限的时间学习更新一些技术文章。互联网这个行业大家目前也都知道是非常内卷的,所有大家在工作之余养成良好的自主学习习惯是非常好的ÿ…...
Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明
Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明 目录 Stable Diffuse 之 安装文件夹、以及操作界面 UI 、Prompt相关说明 一、简单介绍 二、安装文件相关说明 三、界面的简单说明 四、prompt 的一些语法简单说明 1、Prompt :正向提示词 &am…...
【Linux】- 一文秒懂shell编程
shell编程 1.1 Shell 是什么1.2 Shell 脚本的执行方式1.3 编写第一个 Shell 脚本2.1 Shell 的变量2.2 shell 变量的定义2.3 设置环境变量3.1 位置参数变量3.2 预定义变量4.1 运算符4.2 条件判断5.1 流程控制5.2 case 语句5.3 for 循环5.4 while 循环5.5 read基本语法6.1函数6.2…...
CentOS下多网卡绑定多IP段时导致只有一个会通的问题解决
CentOS下多网卡绑定多IP段时导致只有一个会通的问题解决 虚拟机配置多个网络地址,结果同时只能有一个ip是通的, 原因:Linux默认开启了反向路由检查导致的,比如说外面访问eth0的网卡,而网关在eth1上,又或者从…...
关于实现 Vue 动态数据显示,比如数字 0 或 1 怎么显示为 男 或 女等等的动态显示实现方法
具体 Vue 代码演示: test.vue 文件演示: <template> <!-- 方法一 --> <div>{{ test.data 0 ? 男 : 女}}</div><!-- 方法二 --> <div>{{ test.data 0 ? 男 : }}{{ test.data 1 ? 女 : }}{{ test.d…...
mac制作ssl证书|生成自签名证书,nodejs+express在mac上搭建https+wss(websocket)服务器
注意 mac 自带 openssl 所以没必要像 windows 一样先安装 openssl,直接生成即可 生成 ssl/自签名 证书 生成 key # 生成rsa私钥,des3算法,server_ssl.key是秘钥文件名 1024位强度 openssl genrsa -des3 -out server_ssl.key 1024让输入两…...
Unix System V BSD POSIX 究竟是什么?
学习Linux系统,很多同学对这些单词概念很模糊、一脸懵逼! 黄老师觉得,了解了历史,才会真正明白这些单词的含义,坐稳、黄老师发车了!!! 首先介绍一下什么是Unix? UNIX(非复用信息和计算机服务,英语:Uniplexed Information and Computing Service,UnICS)取“UNI…...
数据集学习笔记(六):目标检测和图像分割标注软件介绍和使用,并转换成YOLO系列可使用的数据集格式
文章目录 一、目标检测1.1 labelImg1.2 介绍1.3 安装1.4 使用1.5 转换1.6 验证 二、图像分割2.1 labelme2.2 介绍2.3 安装2.4 使用2.5 转换2.6 验证 一、目标检测 1.1 labelImg 1.2 介绍 labelImg是一个开源的图像标注工具,用于创建图像标注数据集。它提供了一个…...
【高阶数据结构】红黑树 {概念及性质;红黑树的结构;红黑树的实现;红黑树插入操作详细解释;红黑树的验证}
红黑树 一、红黑树的概念 红黑树(Red Black Tree) 是一种自平衡二叉查找树,在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有…...
获取对象占用内存
添加依赖 <dependency><groupId>org.apache.lucene</groupId><artifactId>lucene-core</artifactId><version>4.0.0</version> </dependency>添加vm启动参数 --add-opens java.base/java.langALL-UNNAMED --add-opens java.ba…...
mysql UUID 作为主键的问题
UUID 在MySQL中,可以使用UUID()函数来生成一个新的UUID值。该函数的返回值是一个字符串类型,表示一个32位的十六进制数字,其中包含4个连字符“-”,例如:“6ccd780c-baba-1026-9564-0040f4311e29”。 varchar(32) 32*4…...
2023高教社杯全国大学生数学建模竞赛选题建议
如下为C君的2023高教社杯全国大学生数学建模竞赛(国赛)选题建议, 提示:DS C君认为的难度:C<B<A,开放度:B<A<C 。 D、E题推荐选E题,后续会直接更新E论文和思路…...
分类预测 | MATLAB实现GRNN广义回归神经网络多特征分类预测
分类预测 | MATLAB实现GRNN广义回归神经网络多特征分类预测 目录 分类预测 | MATLAB实现GRNN广义回归神经网络多特征分类预测分类效果基本介绍模型描述预测过程程序设计参考资料分类效果 基本介绍 MATLAB实现GRNN广义回归神经网络多特...
低功耗窗帘电机解决方案成功应用并通过 Matter 1.1 认证
Nordic Semiconductor官方宣布与HooRii Tech(和众科技)携手合作,基于 Nordic nRF52840 芯片平台打造的 HRN71模组,成功赋能低功耗窗帘电机品牌发布Matter产品。低功耗窗帘电机获得 Matter 1.1 认证意味着它具有与其他 Matter 认证…...
如何修复老照片?老照片修复翻新的方法
老旧照片,尤其是黑白照片,往往因为年代久远、保存方式不当等原因而出现褪色、污损、划痕等问题,会比较难以修复,就算是技术精湛的专业修复师,也是需要投入极大时间精力的,效果也是不可预料的。 修复老照片…...
MySQL:区分大小写
查看MySQL版本 show variables; 1、查看 MySQL 当前的区分大小写设置: SHOW VARIABLES LIKE lower_case_table_names; 或者 show Variables like %table_names 2、更改大小写敏感设置: 在 MySQL 5.7 中,更改大小写敏感设置要求修改配置文件 …...
刷题笔记19——优势洗牌和去重保持字典序
摆出无比亲密的态度,装模作样地与对方套近乎,频繁地联系对方。这都说明他们并不相信自己得到了对方的信赖,若是互相信赖,便不会依赖亲密的感觉。在外人看来,反而显得冷淡。 ——尼采《人性的,太人性的》 ha…...
星际争霸之小霸王之小蜜蜂(十一)--杀杀杀
系列文章目录 星际争霸之小霸王之小蜜蜂(十)--鼠道 星际争霸之小霸王之小蜜蜂(九)--狂鼠之灾 星际争霸之小霸王之小蜜蜂(八)--蓝皮鼠和大脸猫 星际争霸之小霸王之小蜜蜂(七)--消失…...
【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
