当前位置: 首页 > news >正文

三次握手四次挥手

TCP协议是一种面向连接的、可靠的、基于字节流的运输层通信协议。它通过三次握手来建立连接,通过四次挥手来断开连接。

三次握手

所谓三次握手,是指建立一个TCP连接时,需要客户端和服务器总共发送3个报文。三次握手的目的是连接服务器指定端口,建立TCP连接,并同步连接双方的序列号和确认号,交换TCP窗口大小信息。

三次握手过程的示意图如下:

    客户端                        服务器|                           ||     SYN seq=x             | 第一次握手|-------------------------->||                           ||     SYN seq=y, ACK ack=x+1| 第二次握手|<--------------------------||                           ||     ACK ack=y+1           | 第三次握手|-------------------------->||                           |
  • 第一次握手:客户端将TCP报文标志位SYN置为1,随机产生一个序号值seq=x,保存在TCP首部的序列号字段里,指明客户端打算连接的服务器的端口,并将该数据包发送给服务器端,发送完毕后,客户端进入SYN_SENT状态,等待服务器端确认。
  • 第二次握手:服务器端收到数据包后由标志位SYN=1知道客户端请求建立连接,服务器端将TCP报文标志位SYN和ACK都置为1,ack=x+1,随机产生一个序号值seq=y,并将该数据包发送给客户端以确认连接请求,服务器端进入SYN_RECV状态。
  • 第三次握手:客户端收到确认后,检查ack是否为x+1,ACK是否为1,如果正确则将标志位ACK置为1,ack=y+1,并将该数据包发送给服务器端,服务器端检查ack是否为y+1,ACK是否为1,如果正确则连接建立成功,客户端和服务器端进入ESTABLISHED状态,完成三次握手,随后客户端与服务器端之间可以开始传输数据了。

四次挥手

所谓四次挥手,是指断开一个TCP连接时,需要客户端和服务器总共发送4个报文。四次挥手的目的是终止数据传输,并释放双方的资源。由于TCP是全双工模式,所以每个方向都需要单独进行关闭。

四次挥手过程的示意图如下:

    客户端                        服务器|                           ||     FIN seq=u             | 第一次挥手|-------------------------->||                           ||     ACK ack=u+1           | 第二次挥手|<--------------------------||                           ||     FIN seq=v             | 第三次挥手|<--------------------------||                           ||     ACK ack=v+1           | 第四次挥手|-------------------------->||                           |
  • 第一次挥手:主动关闭方(可以是客户端或服务器)发送一个FIN报文,用来关闭主动方到被动关闭方的数据传送,也就是主动关闭方告诉被动关闭方:我已经不会再给你发数据了(当然,在fin包之前发送出去的数据,如果没有收到对应的ack确认报文,主动关闭方依然会重发这些数据),但此时主动关闭方还可以接受数据。
  • 第二次挥手:被动关闭方收到FIN报文后,发送一个ACK给对方,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号)。
  • 第三次挥手:被动关闭方发送一个FIN报文,用来关闭被动关闭方到主动关闭方的数据传送,也就是告诉主动关闭方,我的数据也发送完了,不会再给你发数据了。
  • 第四次挥手:主动关闭方收到FIN后,发送一个ACK给被动关闭方,确认序号为收到序号+1,至此,完成四次挥手。

常见问题

  • 为什么连接的时候是三次握手,关闭的时候却是四次挥手?

答:因为当服务器端收到客户端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当服务器端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉客户端,“你发的FIN报文我收到了”。只有等到服务器端所有的报文都发送完了,服务器端才能发送FIN报文,因此不能一起发送。故需要四步握手。

  • 为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?

答:虽然按道理,四个报文都发送完毕,我们可以直接进入CLOSE状态了,但是我们必须假象网络是不可靠的,有可能最后一个ACK丢失。所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。在客户端发送出最后的ACK回复,但该ACK可能丢失。服务器端如果没有收到ACK,将不断重复发送FIN片段。所以客户端不能立即关闭,它必须确认服务器端接收到了该ACK。客户端会在发送出ACK之后进入到TIME_WAIT状态。客户端会设置一个计时器,等待2MSL的时间。如果在该时间内再次收到FIN,那么客户端会重发ACK并再次等待2MSL。所谓的2MSL是两倍的MSL(Maximum Segment Lifetime)。MSL指一个片段在网络中最大的存活时间,2MSL就是一个发送和一个回复所需的最大时间。如果直到2MSL,客户端都没有再次收到FIN,那么客户端推断ACK已经被成功接收,则结束TCP连接。

  • 为什么不能用两次握手进行连接?

答:3次握手完成两个重要的功能,既要双方做好发送数据的准备工作(双方都知道彼此已准备好),也要允许双方就初始序列号进行协商,这个序列号在握手过程中被发送和确认。现在把三次握手改成仅需要两次握手,死锁是可能发生的。作为例子,考虑计算机S和C之间的通信,假定C给S发送一个连接请求分组,S收到了这个分组,并发送了确认应答分组。按照两次握手的协定,S认为连接已经成功地建立了,可以开始发送数据分组。可是,C在S的应答分组在传输中被丢失的情况下,将不知道S是否已准备好,不知道S建立什么样的序列号,C甚至怀疑S是否收到自己的连接请求分组。在这种情况下,C认为连接还未建立成功,将忽略S发来的任何数据分组,只等待连接确认应答分组。而S在发出的分组超时后,重复发送同样的分组。这样就形成了死锁。

相关文章:

三次握手四次挥手

TCP协议是一种面向连接的、可靠的、基于字节流的运输层通信协议。它通过三次握手来建立连接&#xff0c;通过四次挥手来断开连接。 三次握手 所谓三次握手&#xff0c;是指建立一个TCP连接时&#xff0c;需要客户端和服务器总共发送3个报文。三次握手的目的是连接服务器指定端…...

Redis持久化、主从与哨兵架构详解

Redis持久化 RDB快照&#xff08;snapshot&#xff09; 在默认情况下&#xff0c; Redis 将内存数据库快照保存在名字为 dump.rdb 的二进制文件中。 你可以对 Redis 进行设置&#xff0c; 让它在“ N 秒内数据集至少有 M 个改动”这一条件被满足时&#xff0c; 自动保存一次数…...

SQLITE_BUSY 是指 SQLite 数据库返回的错误码,表示数据库正在被其他进程或线程使用,因此当前操作无法完成。

SQLITE_BUSY 当多个进程或线程同时尝试对同一个 SQLite 数据库进行写操作时&#xff0c;就可能出现 SQLITE_BUSY 错误。这是为了确保数据库的数据完整性和一致性而设计的并发控制机制。 如果你在使用 SQLite 时遇到 SQLITE_BUSY 错误&#xff0c;可以考虑以下解决方法&#x…...

matlab求解方程组-求解过程中限制解的取值范围

文章目录 问题背景代码my_fun.mmain.m 结果展示:不加入F(4)加入F(4) 问题背景 求解方程组的时候&#xff0c;对某些未知数的求解结果的取值范围有要求。例如在某些物理问题求解中&#xff0c;要求待求解量大于0。 代码 一共两个文件: my_fun.m main.mmy_fun.m function Fm…...

【正则表达式】正则表达式常见匹配模式

目录 常见匹配模式re.match 从字符串的起始位置匹配一个模式泛匹配匹配目标贪婪匹配非贪婪匹配匹配模式转义 re.search 扫描整个字符串并返回第一个成功的匹配re.findall 以列表形式返回全部能匹配的子串re.sub 替换字符串中每一个匹配的子串后返回替换后的字符串 re.compile 将…...

Docker搭建RK3568建模环境

推荐&#xff1a;Ubuntu 20.04 版本 Docker加速 # 编辑 Docker 配置文件 $ sudo vim /etc/docker/daemon.json# 加入以下配置项 {"registry-mirrors": ["https://dockerproxy.com","https://hub-mirror.c.163.com","https://mirror.baidu…...

TCP/IP基础

前言&#xff1a; TCP/IP协议是计算机网络领域中最基本的协议之一&#xff0c;它被广泛应用于互联网和局域网中&#xff0c;实现了不同类型、不同厂家、运行不同操作系统的计算机之间的相互通信。本文将介绍TCP/IP协议栈的层次结构、各层功能以及数据封装过程&#xff0c;帮助您…...

redis问题:三种集群——主从、哨兵、cluster集群;16384槽等

目录 redis三种集群模式 1、主从 2、哨兵&#xff08;Sentinel&#xff09; 3、集群&#xff08;Cluster&#xff09; Redis Cluster为什么有16384个槽&#xff1f; 1、8KB的心跳包太大 2、集群的数量不会超过1000。 主从配置和集群配置区别 1、主从 2、集群 redis三种…...

转 股票触发指定价格发送到 企业微信

[Python源码]股票价格监听并推送-代码狗 import aiohttp,asyncio,json,time,re,os,datetimeclass StockListen:def __init__(self):#定义需要监听的股票代码列表self.stock_list [1.600050,1.601988,1.601288,1.601939]#定义预期价格列表self.expect_price [6.6,3.0,2.7,5]#…...

Linux修复软RAID

系统应该将mdadm配置成当发生RAID问题时给root用户发送邮件。需要更改/etc/mdadm/mdadm.xonf里的MALLADDR 并用/etc/init.d/mdadm reload重新加载下 查看/proc/mdstat文件 可以看到sdd1被标记F&#xff0c;说明它已经失效 从/dev/md0中移除磁盘sdd1 想要移除磁盘&#xff…...

【嵌入式软件C编程】主函数free子函数malloc地址的两种方式以及注意事项

本文档主要记录嵌入式C语言在子函数中应用malloc函数的方式&#xff0c;在实际项目中内存管理特别重要 一般在主函数中&#xff08;main&#xff09;使用malloc函数&#xff0c;然后在通过free函数进行释放内存&#xff0c;但有时候如果必须在子函数长调用malloc函数该怎样进行…...

金融工程学学习笔记第一章

第一章 金融工程概述 什么是金融工程 金融工程的含义 金融工程&#xff1a; 金融工程&#xff1a;一门融现代金融学、数理和工程方法与信息技术与一体的新兴交叉型学科。 工程是指以某种设想的目标为依据&#xff0c;应用有关科学知识和技术手段&#xff0c;通过有组织的一…...

CentOS 7 编译ZooKeeper C客户端

简介 本文主要讲解&#xff1a;Zookeeper C客户端库在Centos 7上的编译&#xff0c;使用的Zookeeper版本为3.4.13。 工具安装 安装ant 和cppunit-devel工具&#xff1a; [rootlocalhost source_code]# yum install -y cppunit-devel 已加载插件&#xff1a;fastestmirror L…...

【2023年数学建模国赛】A题解题思路

2023年数学建模国赛A题解题思路 问题1&#xff1a; 要计算定日镜场的年平均光学效率和年平均输出热功率&#xff0c;以及单位镜面面积年平均输出热功率&#xff0c;我们可以按照以下步骤进行&#xff1a; 遍历所有定日镜的位置&#xff0c;根据给定的定日镜尺寸和安装高度&am…...

人们对区块链的认识开始变得深入和完善,另一条新路径开始衍生

当区块链行业的发展进入到深水区&#xff0c;特别是当有关区块链的狂热与躁动开始退场&#xff0c;仅仅只是主打区块链的概念&#xff0c;而没有找到区块链与现实商业联通的方式和方法&#xff0c;依然成为困扰区块链发展的一大症结。   事实上&#xff0c;从区块链被人们认识…...

关于Comparable、Comparator接口返回值决定顺序的问题

Comparable和Comparator接口都是实现集合中元素的比较、排序的&#xff0c;下面先简单介绍下他们的用法。 1. 使用示例 public class Person {private String name;private Integer age;public Person() {}public Person(String name, Integer age) {this.name name;this.ag…...

js 根据键判断值

最原始的写法&#xff1a; 改进后的写法&#xff1a; const DeviceTypeObj {SO2: "SO<sub>2</sub>",CO: "CO",NO: "NO",NO2: "NO<sub>2</sub>",O3: "O<sub>3</sub>", let value Dev…...

堆排序,以及大顶堆构造过程Java实现

import java.util.Arrays;public class Main {public static void main(String[] args) {int a[] new int[] { 1, 1, 23, 456, 0 };// int a初始化方式int bb[] { 1, 2, 3, 4 };// int c[5] {1,2,34,5,6};//错误int d[] new int[6]; // 初始为0// int e[] new int[5]{1,2,…...

【C++】类的封装 ① ( 类和对象 | 面向对象三大特征 - 封装 继承 多态 | 类的封装引入 )

文章目录 一、类和对象1、类和对象概念2、代码示例 - 定义类和对象 二、类的封装1、面向对象三大特征2、类的封装引入 一、类和对象 1、类和对象概念 " 面向对象编程 " 是一种 " 编程范式 " , 可以适用于所有的 高级语言 , C 也包括在内 ; 面向对象编程 基…...

Docker原理详细剖析-Namespace

一、简介 docker容器技术从2013年开始火了以后&#xff0c;2014年左右当时有幸在学校能和学院教授一起做些项目以及学习。其中docker技术在当时来说还算是比较新的技术&#xff0c;国内关于这块的资料以及使用也才刚刚开始&#xff0c;讨论docker技术&#xff0c;算是相对时髦的…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问&#xff08;基础概念问题&#xff09; 1. 请解释Spring框架的核心容器是什么&#xff1f;它在Spring中起到什么作用&#xff1f; Spring框架的核心容器是IoC容器&#…...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议&#xff0c;专门用于在数字音频设备之间传输数字音频数据。它由飞利浦&#xff08;Philips&#xff09;公司开发&#xff0c;以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...

Vite中定义@软链接

在webpack中可以直接通过符号表示src路径&#xff0c;但是vite中默认不可以。 如何实现&#xff1a; vite中提供了resolve.alias&#xff1a;通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...

Ubuntu Cursor升级成v1.0

0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开&#xff0c;快捷键也不好用&#xff0c;当看到 Cursor 升级后&#xff0c;还是蛮高兴的 1. 下载 Cursor 下载地址&#xff1a;https://www.cursor.com/cn/downloads 点击下载 Linux (x64) &#xff0c;…...