用 Python 微调 ChatGPT (GPT-3.5 Turbo)
用 Python 微调 ChatGPT (GPT-3.5 Turbo)
备受期待的 GPT-3.5 Turbo 微调功能现已推出,并且为今年秋季即将发布的 GPT-4 微调功能奠定了基础。 这不仅仅是一次简单的更新——它是一个游戏规则改变者,为开发人员提供了完美定制人工智能模型的关键解决方案,并以前所未有的方式扩展这些自定义模型。 本文将你经历人工智能进化的惊心动魄之旅。

文章目录
- ChatGPT 微调带来哪些优势
- 如何微调 GPT-3.5 Turbo
- Step 1. 准备数据
- Step 2. 上传数据到 OpenAI
- Step 3. 创建微调任务
- Step 4. 使用微调模型
- 成本
ChatGPT 微调带来哪些优势
自 ChatGPT 推出以来,人们一直渴望能够塑造和微调 ChatGPT,以获得真正独特的用户体验。今天这个梦想已经实现了。开发人员现在可以进行监督微调,针对各自的用例将模型个性化。 微调就像一根魔杖,可以在各种用例中改变模型性能,具体体现在:
🚀 **增强可控性:**让模型成为你的终极助手。通过微调,你就是老板,指挥它按照你的指令工作,权力由你掌控。
💼 **美化输出格式:**微调可以打磨输出细节,摆脱不稳定的输出格式。现在,你的模型每次都能为你提供完美的格式。无论是代码补全还是精心设计 API 调用,该模型都能以干净、一致的格式为你提供支持。
🎭 **打造风格:**微调可让调节输出内容风格,确保模型与你想要的独特基调一致,使其更加贴合你的需求和场景。
微调不仅可以提高性能,还可以提高性能。借助 GPT-3.5 Turbo,提示可以得到简化,同时保持最佳性能。事实上,OpenAI 的一些早期测试人员通过将指令直接集成到模型中,将提示词大幅削减了惊人的 90%。 结果是闪电般快速的 API 调用大幅削减了成本。
如何微调 GPT-3.5 Turbo
Step 1. 准备数据
训练数据需存储在纯文本文件中,每行均为 JSON(*.jsonl 文件),格式如下:
{"messages": [{"role": "system","content": "你是一个智慧幽默的小说家。"},{"role": "user","content": "请写一篇20字以内的微型小说。"},{"role": "assistant","content": "《夜》\n男:疼么?\n女:恩!\n男:算了?\n女:别!”}]
}
-
系统消息(system)提供系统提示。这告诉模型如何响应。例如,网页版 ChatGPT 的系统提示是:“你是一个有用的助手(You are a helpful assistant)”。
-
用户消息(user)提供提示词,通常是人们在 ChatGPT 输入框中输入的内容。
-
助理消息(assistant)提供了你希望模型给出的回答。
Step 2. 上传数据到 OpenAI
上传数据需要用到 openai SDK 和 API Key。通过如下命令安装 openai SDK。
pip install -U openai
安装好 SDK 后,通过 openai.File.create方法上传数据集,下面是示例代码:
import openaiopenai.api_key = "YOUR_OPENAI_API_KEY"openai.File.create(file=open('/path/to/your/data.jsonl'),purpose='fine-tune',
)
上面的代码会返回一个 openai File 对象,其中包含文件大小、创建时间、上传状态和 ID 等信息。您可以通过 ID(类似于“file-xxxxxxx”)来检查 JSONL 文件中是否存在错误。
openai.File.retrieve('your_file_id')
Step 3. 创建微调任务
通过 openai.FineTuningJob.create创建微调任务
openai.FineTuningJob.create(training_file='your_file_id',model='gpt-3.5-turbo',
)
上面代码会返回一个 FineTuningJob 对象,其中包含重要信息,例如ID(类似于“ftjob-xxxxxxxx”),可用于检查作业的状态。由于此过程涉及更新大型神经网络的权重,一般需要较长时间(30 分钟、1 小时等),具体取决于你的训练数据量。
你可以用如下方式检查作业的状态:
openai.FineTuningJob.retrieve('ftjob-xxxxxxxx')
上面代码将返回一个包含创建时间、完成时间、epoch 数等信息的对象。
如果任务尚未完成,finished_at 字段将为空。另一个字段,fine_tuned_model 也将为空。完成后,此字段将包含模型的 ID,你将在以后的调用中使用该 ID。
检查任务进展情况的另一种方法是使用 list_events 函数。
openai.FineTuningJob.list_events(id='ftjob-xxxxx', limit=10)
该函数会返回消息告诉你相关信息,例如训练步骤/损失和该训练步骤的其他指标,以及训练完成后的模型 ID。
Step 4. 使用微调模型
模型训练完成后就可以测试你的微调模型了。你可以将其与未微调的 GPT-3.5 Turbo 进行比较,可以按如下方式完成:
completion = openai.ChatCompletion.create(model='gpt-3.5-turbo',messages=[{"role": "system", "content": "你是一个智慧幽默的小说家。"},{"role" "user", "content": "请写一篇20字以内的微型小说。"}]
)
print(completion.choices[0].message)
然后,尝试你自己的微调模型(使用从上一步检索到的模型 ID):
completion = openai.ChatCompletion.create(model='ft:gpt-3.5-turbo-xxxx:<your_username>::<some_id>', # your model idmessages=[{"role": "system", "content": "你是一个智慧幽默的小说家。"},{"role" "user", "content": "请写一篇20字以内的微型小说。"}]
)
print(completion.choices[0].message)
成本

GPT-3.5 Turbo 训练成本为每1千 token 0.0080美元,折合人民币 0.0588 元(6分钱);使用成本输入每1千 token 0.0120美元,折合人民币 0.0881 元(9分钱);输出每1千 token 0.0160美元,折合人民币 0.1175 元(1毛2)。整体上比 GPT-3.5 Turbo 贵了不少。GPT-3.5 Turbo 4K 输入每1千 token 0.0015美元,折合人民币 0.0110元(1分钱),输入每1千 token 0.002美元,折合人民币 0.0147元(1分5)。这样算下来微调 GPT-3.5 Turbo 模型的使用成本是 GPT-3.5 Turbo 的 6 倍多。
当然这部分额外付出的成本能换来更强大的模型,整体投入产出比上还是非常划算的。
相关文章:
用 Python 微调 ChatGPT (GPT-3.5 Turbo)
用 Python 微调 ChatGPT (GPT-3.5 Turbo) 备受期待的 GPT-3.5 Turbo 微调功能现已推出,并且为今年秋季即将发布的 GPT-4 微调功能奠定了基础。 这不仅仅是一次简单的更新——它是一个游戏规则改变者,为开发人员提供了完美定制人工智能模型的关键解决方案…...
单目标应用:基于蜘蛛蜂优化算法(Spider wasp optimizer,SWO)的微电网优化调度MATLAB
一、微网系统运行优化模型 微电网优化模型介绍: 微电网多目标优化调度模型简介_IT猿手的博客-CSDN博客 二、蜘蛛蜂优化算法 蜘蛛蜂优化算法(Spider wasp optimizer,SWO)由Mohamed Abdel-Basset等人于2023年提出,该…...
2023年7月京东饮料行业数据分析(京东运营数据分析)
饮料消费已成为当下快消品行业里的主力军,随着社会群体喜好的改变、消费群体的不断扩大,可选择的饮料种类越来越多,我国饮料市场的体量也较为庞大。根据鲸参谋电商数据分析平台的数据显示,今年7月份,京东平台饮料的销量…...
执行 JUnit 单元测试前,修改环境变量
同一份代码,在不改变配置文件的情况下,可以连接不同的数据库,进行JUnit测试。 非开发、测试、生产环境的区别。而是 我就站在这里,指哪打哪! 避免重复造轮子,参考博文: 使用junit&spri…...
openGauss学习笔记-63 openGauss 数据库管理-资源池化架构
文章目录 openGauss学习笔记-63 openGauss 数据库管理-资源池化架构 openGauss学习笔记-63 openGauss 数据库管理-资源池化架构 本文档主要介绍资源池化架构下的一些最佳实践和使用注意事项,用于支撑对相关特性感兴趣的开发者可以快速部署、实践或进行定制化开发。…...
计算机竞赛 基于深度学习的植物识别算法 - cnn opencv python
文章目录 0 前言1 课题背景2 具体实现3 数据收集和处理3 MobileNetV2网络4 损失函数softmax 交叉熵4.1 softmax函数4.2 交叉熵损失函数 5 优化器SGD6 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 **基于深度学习的植物识别算法 ** …...
ChatGPT如何应对紧急情况和灾害应对?
ChatGPT是一个文本生成模型,它可以用于各种任务,但在处理紧急情况和灾害应对方面,它有一些潜在的用途和限制。在这篇文章中,我们将讨论ChatGPT在紧急情况和灾害应对中的应用,以及如何充分利用这一技术,并提…...
ElementUI浅尝辄止37:Select 选择器
当选项过多时,使用下拉菜单展示并选择内容。 1.如何使用?基础单选 v-model的值为当前被选中的el-option的 value 属性值 <template><el-select v-model"value" placeholder"请选择"><el-optionv-for"item in …...
PCL 基于任意四点计算球心坐标
文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 继续基于之前的思路PCL 基于三个点计算圆心坐标之二(二维),假设存在四个不共面的点, ( x 1 , y 1 ) (x_1,y_1)...
飞书即时消息无需API开发连接Cohere,打造飞书AI智能问答助手
飞书即时消息用户使用场景: 许多企业都在使用飞书系统进行协同办公,而现在有了Cohere大语言模型技术,能够根据用户的提问来自动产生回答,无需人为干预。对于企业负责人来说,他们认为如果将Cohere技术融入到飞书机器人中…...
FPGA实现Cordic算法——向量模式
FPGA实现Cordic算法——向量模式 FPGA实现Cordic算法——向量模式1.cordic算法基本原理2.FPGA实现cordic算法向量模式i、FPGA串行实现cordicii、FPGA流水线实现cordiciii、实验结果 FPGA实现Cordic算法——向量模式 1.cordic算法基本原理 FPGA中运算三角函数,浮点数…...
【常用代码14】el-input输入框内判断正则,只能输入数字,过滤汉字+字母。
问题描述: el-input输入框,只能输入数字,但是不能显示输入框最右边的上下箭头, <el-input v-model"input" type"number" placeholder"请输入内容" style"width: 200px;margin: 50px 0;&…...
[NLP]LLM--使用LLama2进行离线推理
一 模型下载 二 模型推理 本文基于Chinese-LLaMA-Alpaca-2项目代码介绍,使用原生的llama2-hf 克隆好了Chinese-LLaMA-Alpaca-2 项目之后,基于GPU的部署非常简单。下载完成以后的模型参数(Hugging Face 格式)如下: 简单说明一下各个文件的作…...
初始化一个Gin框架的Go-Web项目
使用到的第三方库 gin Gin 框架viper 配置文件管理cors 跨域资源请求配置gorm ORM 库zap 日志记录 main 包 Go 语言程序的入口点 main.go 文件 使用 flag 读取配置文件路径参数,默认当前目录下使用 viper 读取 config.ini 配置文件初始化初始数据初始化随机数种子初…...
Mybatis日期检索格式报错
问题复现 org.mybatis.spring.MyBatisSystemException: nested exception is org.apache.ibatis.exceptions.PersistenceException: ### Error querying database. Cause: java.lang.IllegalArgumentException: invalid comparison: java.util.Date and java.lang.String ##…...
如何把Android Framework学彻底?一条龙学习
Framework通俗易懂 平时学习 Android 开发的第一步就是去学习各种各样的 API,如 Activity,Service,Notification 等。其实这些都是 Framework 提供给我们的。Framework 层为开发应用程序提供了非常多的API,我们通过调用这些 API …...
uview indexList 按字母跳转不了
点击字母跳转不到位的问题:在<u-index-list>添加方法select“clickSelect“ 锚点要加id,用对应的字母做为id值, <u-index-anchor :id"key" :index"key"/> <template><view><view class&qu…...
安全模型中的4个P
引言:在安全模型中,经常会碰到PDR,PPDR,IPDRR,CARTA-PPDR等模型,其中的P,是predict?是prevent?还是protect?还是policy呢? 一、4P字典意思解释 1、predict&a…...
网站优化搜索引擎与关键词
网站优化搜索引擎与关键词 人们不应该高估搜索引擎的智商。这不利于seo的研究,事实上,搜索引擎是非常愚蠢的,让我们举一个非常简单的例子,你在搜索引擎中输入“教师”这个词,搜索引擎就会给出一个准确的搜索列表。我们…...
aws-msk-托管kafka集群的简单使用(VPC内部访问:无验证和SASL认证)
1.使用控制台创建即可 根据实例类型创建需要至少15分以上,可以提前创建好ec2实例和Secrets Manager,一会会使用到 2. 创建Secrets Manager (使用无认证时请跳过) 官方文档:https://docs.aws.amazon.com/zh_cn/msk/latest/deve…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
如何更改默认 Crontab 编辑器 ?
在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...
