当前位置: 首页 > news >正文

B - Polycarp‘s Practice

Polycarp is practicing his problem solving skill. He has a list of nn problems with difficulties a_1, a_2, \dots, a_na1​,a2​,…,an​, respectively. His plan is to practice for exactly kk days. Each day he has to solve at least one problem from his list. Polycarp solves the problems in the order they are given in his list, he cannot skip any problem from his list. He has to solve all nn problems in exactly kk days.

Thus, each day Polycarp solves a contiguous sequence of (consecutive) problems from the start of the list. He can't skip problems or solve them multiple times. As a result, in kk days he will solve all the nn problems.

The profit of the jj-th day of Polycarp's practice is the maximum among all the difficulties of problems Polycarp solves during the jj-th day (i.e. if he solves problems with indices from ll to rr during a day, then the profit of the day is \max\limits_{l \le i \le r}a_il≤i≤rmax​ai​). The total profit of his practice is the sum of the profits over all kk days of his practice.

You want to help Polycarp to get the maximum possible total profit over all valid ways to solve problems. Your task is to distribute all nn problems between kk days satisfying the conditions above in such a way, that the total profit is maximum.

For example, if n = 8, k = 3n=8,k=3 and a = [5, 4, 2, 6, 5, 1, 9, 2]a=[5,4,2,6,5,1,9,2], one of the possible distributions with maximum total profit is: [5, 4, 2], [6, 5], [1, 9, 2][5,4,2],[6,5],[1,9,2]. Here the total profit equals 5 + 6 + 9 = 205+6+9=20.

Input

The first line of the input contains two integers nn and kk (1 \le k \le n \le 20001≤k≤n≤2000) — the number of problems and the number of days, respectively.

The second line of the input contains nn integers a_1, a_2, \dots, a_na1​,a2​,…,an​ (1 \le a_i \le 20001≤ai​≤2000) — difficulties of problems in Polycarp's list, in the order they are placed in the list (i.e. in the order Polycarp will solve them).

Output

In the first line of the output print the maximum possible total profit.

In the second line print exactly kk positive integers t_1, t_2, \dots, t_kt1​,t2​,…,tk​ (t_1 + t_2 + \dots + t_kt1​+t2​+⋯+tk​ must equal nn), where t_jtj​ means the number of problems Polycarp will solve during the jj-th day in order to achieve the maximum possible total profit of his practice.

If there are many possible answers, you may print any of them.

Sample 1

InputcopyOutputcopy
8 3
5 4 2 6 5 1 9 2
20
3 2 3

Sample 2

InputcopyOutputcopy
5 1
1 1 1 1 1
1
5

Sample 3

InputcopyOutputcopy
4 2
1 2000 2000 2
4000
2 2

Note

The first example is described in the problem statement.

In the second example there is only one possible distribution.

In the third example the best answer is to distribute problems in the following way: [1, 2000], [2000, 2][1,2000],[2000,2]. The total profit of this distribution is 2000 + 2000 = 40002000+2000=4000.

题目翻译

给定长度为n的序列,要求分成k段,最大化每段最大值的和

#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cmath>
#include<string.h>
#include<climits>
#include<map>
#include<algorithm>
typedef long long ll;
using namespace std;
const int N = 2010;
int n, k;struct node {int num, val;
}mm[N];bool cmp1(node n1, node n2)
{return n1.val > n2.val;
}bool cmp2(node n1, node n2)
{return n1.num < n2.num;
}int main()
{cin >> n >> k;for (int i = 1; i <= n; i++){int num;cin >> num;mm[i].num = i;mm[i].val = num;}sort(mm + 1, mm + n + 1, cmp1);//先对整个序列按照数值的大小进行排序,去前k个数的和int sum = 0;for (int i = 1; i <= k; i++) sum += mm[i].val;sort(mm + 1, mm + k + 1, cmp2); //在对前k个数进行排序,做差分组cout << sum << endl;for (int i = 1; i < k; i++) cout << mm[i].num - mm[i - 1]. num << " ";cout << n - mm[k - 1].num << endl;return 0;
}

相关文章:

B - Polycarp‘s Practice

Polycarp is practicing his problem solving skill. He has a list of nn problems with difficulties a_1, a_2, \dots, a_na1​,a2​,…,an​, respectively. His plan is to practice for exactly kk days. Each day he has to solve at least one problem from his list. …...

朴素贝叶斯数据分类------

------------------后期会编辑些关于朴素贝叶斯算法的推导及代码分析----------------- import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB, BernoulliNB, MultinomialNB from sklear…...

flask中的操作数据库的插件Flask-SQLAlchemy

1、ORM 框架 Web 开发中&#xff0c;一个重要的组成部分便是数据库了。Web 程序中最常用的莫过于关系型数据库了&#xff0c;也称 SQL 数据库。另外&#xff0c;文档数据库&#xff08;如 mongodb&#xff09;、键值对数据库&#xff08;如 redis&#xff09;近几年也逐渐在 w…...

arrow的使用

pandas2.0引入了pyarrow作为可选后端,比numpy的性能提高很多,所以为了改造backtrader,用cython和c++重写整个框架,准备用arrow作为底层的数据结构(backtrader现在的底层数据结构是基于python array构建的) 安装arrow推荐使用vcpkg git clone https://github.com/Microsoft…...

【24种设计模式】装饰器模式(Decorator Pattern(Wrapper))

装饰器模式 装饰器模式是一种结构型设计模式&#xff0c;用于动态地给对象添加额外的行为或责任&#xff0c;而不需要改变原始对象的结构。通过创建一个包装器类&#xff08;装饰器&#xff09;&#xff0c;它包含原始对象的引用&#xff0c;并提供与原始对象相同的接口&#…...

小程序v-for与key值使用

小程序中的v-for和key与Vue中的用法基本相同。v-for用于循环渲染列表&#xff0c;key用于给每个循环项分配一个唯一的标识。 使用v-for时&#xff0c;通常建议使用wx:for代替&#xff0c;例如&#xff1a; <view wx:for"{{ items }}" wx:key"id">{…...

Qt包含文件不存在问题解决 QNetworkAccessManager

这里用到了Qt的网络模块&#xff0c;在.pro中添加了 QT network 但是添加 #include <QNetworkAccessManager> 会报错说找不到&#xff0c;可以通过在项目上右键执行qmake后&#xff0c;直接#include <QNetworkAccessManager>就不会报错了&#xff1a;...

【视频图像篇】FastStone Capture屏幕长截图软件

【视频图像篇】FastStone Capture屏幕长截图软件 FastStone Capture最常用的一款屏幕长截图软件—【蘇小沐】 文章目录 【视频图像篇】FastStone Capture屏幕长截图软件实验环境1、启动界面2、自定义工具栏3、自动保存 &#xff08;一&#xff09;长截图1、捕获滚动窗口2、捕获…...

【C语言】每日一题(杨氏矩阵查找数)

目录 杨氏矩阵介绍&#xff1a;方法&#xff1a;思路&#xff1a;代码实现&#xff1a; 杨氏矩阵介绍&#xff1a; 既然在杨氏矩阵中查找数&#xff0c;那什么是杨氏矩阵呢&#xff1f; 矩阵的每行从左到右是递增的&#xff0c;矩阵从上到下是递增的。 例如&#xff1a; 方法…...

探究SpringWeb对于请求的处理过程

探究目的 在路径归一化被提出后&#xff0c;越来越多的未授权漏洞被爆出&#xff0c;而这些未授权多半跟spring自身对路由分发的处理机制有关。今天就来探究一下到底spring处理了什么导致了才导致鉴权被绕过这样严重的问题。 DispatcherServlet介绍 首先在分析spring对请求处…...

如何使用Google Compute Engine入门指南快速创建和配置您的云虚拟机实例

文章目录 步骤1&#xff1a;创建 Google Cloud Platform&#xff08;GCP&#xff09;账户步骤2&#xff1a;设置 GCP 项目步骤3&#xff1a;启用 Google Compute Engine API步骤4&#xff1a;安装 Google Cloud SDK步骤5&#xff1a;创建虚拟机实例步骤6&#xff1a;连接到虚拟…...

springMVC中全局异常处理

前言&#xff1a; 当不同方法执行时&#xff0c;抛出相同异常。为了简约代码和避免重复使用try{}catch{}。此时使用统一异常处理。但局部的统一异常处理只能为所在类所调用。因此产生全局异常处理&#xff0c;该类中统一异常处理方法可以作用于整个controller。&#xff08;以…...

【Nginx24】Nginx学习:压缩模块Gzip

Nginx学习&#xff1a;压缩模块Gzip 又是一个非常常见的模块&#xff0c;Gzip 现在也是事实上的 Web 应用压缩标准了。随便打开一个网站&#xff0c;在请求的响应头中都会看到 Content-Encoding: gzip 这样的内容&#xff0c;这就表明当前这个请求的页面或资源使用了 Gzip 压缩…...

我的私人笔记(zookeeper分布式安装)

分布式安装 1.安装前准备 (1)下载zookeeper&#xff1a;Index of /dist/zookeeper&#xff08;当前使用为3.4.10版本&#xff09; (2)安装JDK (3)拷贝zookeeper安装包到Linux系统下 (4)解压到指定目录 tar -xzvf zookeeper-3.4.10.tar.gz -C /opt/servers/ (5)修改名称 …...

小程序排名优化全攻略

随着小程序的快速发展,小程序之间的竞争也日益激烈。如何在竞争对手众多的环境下脱颖而出,通过小程序排名优化来提高曝光率和流量转化率,已成为许多小程序开发者和运营者关注的重点。本文将全面解析小程序排名优化的方法,让您可以更好地提升小程序的搜索排名。 【名即微】 小程…...

MySQL MHA

什么是 MHA MHA&#xff08;Master High Availability&#xff09;是一套优秀的MySQL高可用环境下故障切换和主从复制的软件 MHA 的出现就是解决MySQL 单点故障的问题 MySQL故障切换过程中&#xff0c;MHA能做到0-30秒内自动完成故障切换操作 MHA能在故障切换的过程中最大程度上…...

Java API速记手册(持续更新ing...)

诸神缄默不语-个人CSDN博文目录 之所以干这个事原因也很简单&#xff0c;因为我3年没写Java了&#xff0c;现在在复健。 因为我最近都在用Python&#xff0c;所以跟Python一样的部分我就不写了。 最基本的框架public class MainClass {public static void main(String[] args…...

FANUC机器人电气控制柜内部硬件电路和模块详细介绍

FANUC机器人电气控制柜内部硬件电路和模块详细介绍 PSU电源单元 通过背板传输了如下电源 +5 +2.0V +3.3 +24v +24E +15V -15V 主板--接口描述: 主板内部结构: 面板电路板: 引申一下 KM21 与 KM22 的作用它们分别接至操作面板上上的急停按...

LGFormer:LOCAL TO GLOBAL TRANSFORMER FOR VIDEO BASED 3D HUMAN POSE ESTIMATION

基于视频的三维人体姿态估计的局部到全局Transformer 作者&#xff1a;马海峰 *&#xff0c;陆克 * †&#xff0c;薛健 *&#xff0c;牛泽海 *&#xff0c;高鹏程† * 中国科学院大学工程学院&#xff0c;北京100049 鹏程实验室&#xff0c;深圳518055 来源&#xff1a;202…...

数据结构零基础入门篇(C语言实现)

前言&#xff1a;数据结构属于C学习中较难的一部分&#xff0c;对应学习者的要求较高&#xff0c;如基础不扎实&#xff0c;建议着重学习C语言中的指针和结构体&#xff0c;万丈高楼平地起。 目录&#xff1a; 一&#xff0c;链表 1&#xff09;单链表的大致结构实现 2&…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...

LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用

中达瑞和自2005年成立以来&#xff0c;一直在光谱成像领域深度钻研和发展&#xff0c;始终致力于研发高性能、高可靠性的光谱成像相机&#xff0c;为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...