当前位置: 首页 > news >正文

【C++进阶】:AVL树(平衡因子)

AVL树

  • 一.概念
  • 二.插入
    • 1.搜索二叉树
    • 2.平衡因子
  • 三.旋转
    • 1.更新平衡因子
    • 2.旋转
      • 1.左单旋
      • 2.右单旋
      • 3.先右旋再左旋
      • 4.先左旋再右旋
  • 四.完整代码

一.概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

在这里插入图片描述

二.插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子

1.搜索二叉树

在这里插入图片描述

2.平衡因子

在这里插入图片描述

一颗树如何插入会影响节点的平衡因子呢?(平衡因子是右节点减去左节点)

在这里插入图片描述

如果我们插在6的左边,那么6的平衡因子减一,同理7的左子树高度加一,那么7的平衡因子减一,再继续向上5的右子树的最高高度并没有发生改变,所以5的平衡因子不发生改变。

在这里插入图片描述
同理,插在6的右边,6的平衡因子加一,7的平衡因子减一。

在这里插入图片描述
如果插在9的右边,那么8的平衡因子就会变为2,说明此树不平衡。

总结:
1.新镇在左,parent平衡因子减减。
2.新增在右,parent平衡因子加加。
3.如果更新后的parent平衡因子为0,说明parent所在的树的高度不变,不会再影响祖先,不用再继续更新了。
4如果更新后parent的平衡因子为1或者-1,那么就需要继续向上更新。
5.如果更新后,parent平衡因子为2或-2,说明该树不平衡,对parent所在的子树进行旋转。

三.旋转

1.更新平衡因子

由上面分析可以知道更新结束的条件是平衡因子为0或者更新到根节点。

首先在每个节点里加入平衡因子

在这里插入图片描述

接着在插入的同时更新平衡因子

在这里插入图片描述

2.旋转

旋转要保持的要求:
1.旋转后也是搜索二叉树。
2.变成平衡树并且降低树的高度。

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

1.左单旋

在这里插入图片描述
在这里插入图片描述

通过观察我们可以发现,我们其实只需要移动蓝色的节点就可以实现左旋。我们将这三个节点分别记录,然后修改它们的内部属性即可。
在这里插入图片描述

在这里插入图片描述

2.右单旋

在这里插入图片描述
在这里插入图片描述

3.先右旋再左旋

在这里插入图片描述
在这里插入图片描述

这里的旋转并不难,直接复用就可以.
在这里插入图片描述

困难的部分是如何调控平衡因子,插入的位置不同,平衡因子也不同分三种情况讨论。

在这里插入图片描述

在这里插入图片描述

4.先左旋再右旋

同理,左右旋与上文一样,需要分三种情况来讨论。

在这里插入图片描述

在这里插入图片描述

四.完整代码

测试

#include"KVL.h"
#include<vector>int main()
{AVLTree<int,int> t;srand(time(0));vector<int>a;for (int i = 0; i < 100; i++)a.push_back(rand());for (auto x : a)t.Insert(make_pair(x,x));t.Print();
}

#include<iostream>
#include<assert.h>
using namespace std;template<class K,class V>
struct KVLTreeNode
{pair<K, V>_kv;KVLTreeNode<K, V>* _left;KVLTreeNode<K, V>* _right;KVLTreeNode<K, V>* _parent;int _bf;//平衡因子KVLTreeNode(const pair<K,V>&kv):_kv(kv),_left(nullptr),_right(nullptr),_parent(nullptr),_bf(0){}
};template<class K,class V>
class AVLTree
{
public:typedef KVLTreeNode<K,V> Node;bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);return true;}Node* cur = _root;Node* parent = _root;while (cur){if (kv.first < cur->_kv.first){parent = cur;cur = cur->_left;}else if (kv.first > cur->_kv.first){parent = cur;cur = cur->_right;}elsereturn false;}cur = new Node(kv);if (kv.first < parent->_kv.first){parent->_left = cur;cur->_parent = parent;}else{parent->_right = cur;cur->_parent = parent;}//控制平衡while (parent){if (cur == parent->_left){parent->_bf--;}else // if (cur == parent->_right){parent->_bf++;}if (parent->_bf == 0){// 更新结束break;}else if (parent->_bf == 1 || parent->_bf == -1){// 继续往上更新cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){// 子树不平衡了,需要左旋转if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);}//右旋转else if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);}//先左单旋再右旋转else if (parent->_bf == -2 && cur->_bf == 1){RotateLR(parent);}//先右单选再左单旋else if (parent->_bf == 2 && cur->_bf == -1){RotateRL(parent);}break;}else{assert(false);}}return true;}void RotateL(Node* parent){Node* cur = parent->_right;Node* curleft = cur->_left;Node* ppnode = parent->_parent;//记录父节点的父节点//父节点的右孩子变成curleftparent->_right = curleft;if(curleft)//细节注意curleft为空时不能操作curleft->_parent = parent;//父节点变为cur的左孩子cur->_left = parent;parent->_parent = cur;//如果原来父节点是根节点if (parent == _root){_root = cur;cur->_parent = nullptr;}else//如果不是根节点判断它应该是左儿子还是右儿子{if (ppnode->_left == parent){ppnode->_left = cur;}else{ppnode->_right = cur;}cur->_parent = ppnode;}parent->_bf = cur->_bf = 0;}void RotateR(Node* parent){Node* cur = parent->_left;Node* curright = cur->_right;Node* pphead = parent->_parent;//父节点到cur右边cur->_right=parent;parent->_parent = cur;//父节点的左孩子变成currightparent->_left = curright;if (curright)curright->_parent = parent;//cur的父节点变为原来父节点的父节点if (pphead)//如果不是根节点{if (pphead->_left == parent)pphead->_left = cur;elsepphead->_right = cur;cur->_parent = pphead;}else{_root = cur;cur->_parent = nullptr;}parent->_bf = cur->_bf = 0;}void RotateRL(Node* parent){Node* cur = parent->_right;Node* curleft = cur->_left;int bf = curleft->_bf;RotateR(parent->_right);RotateL(parent);//第一种情况if (bf == 0){parent->_bf = cur->_bf = 0;}//第二种情况else if (bf == 1){parent->_bf = -1, cur->_bf = 0, curleft->_bf = 0;}//第三种情况else if(bf==-1){cur->_bf = 1, curleft->_bf = 0, parent->_bf = 0;}//其他情况错误else{assert(false);}}void RotateLR(Node* parent){Node* cur = parent->_left;Node* curright = cur->_right;int bf = curright->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 0){parent->_bf = cur->_bf = 0;}else if (bf == 1){parent->_bf = curright->_bf = 0, cur->_bf = -1;}else if (bf == -1){parent->_bf = 1, cur->_bf = curright->_bf = 0;}else{assert(false);}}void Print(){Print(_root);}void Print(Node* root){if (root == nullptr) return;Print(root->_left);cout << root->_kv.second << ' ';Print(root->_right);}
private:Node* _root=nullptr;
};

相关文章:

【C++进阶】:AVL树(平衡因子)

AVL树 一.概念二.插入1.搜索二叉树2.平衡因子 三.旋转1.更新平衡因子2.旋转1.左单旋2.右单旋3.先右旋再左旋4.先左旋再右旋 四.完整代码 一.概念 二叉搜索树虽可以缩短查找的效率&#xff0c;但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元…...

Python教程33:关于在使用zipfile模块,出现中文乱码的解决办法

zipfile是Python标准库中的一个模块&#xff0c;zipfile里有两个class, 分别是ZipFile和ZipInfo&#xff0c;用来创建和读取zip文件&#xff0c;而ZipInfo是存储的zip文件的每个文件的信息的。ZIP文件是一种常见的存档文件格式&#xff0c;它可以将多个文件和目录压缩为一个文件…...

【疑难杂症】使用xshell连接云服务器连接不上

目录 【1】使用xshell连接云服务器连接不上 【1.1】解决方法一 【1.2】解决方法二 【1】使用xshell连接云服务器连接不上 Centos7使用xshell连接提示"ssh服务器拒绝了密码 请再试一次"。 问题如图所示&#xff0c;新安装了一台Centos7服务器&#xff0c;使用ssh连…...

Qt MinGW / MSVC

MinGW/MSVC的关系 MinGW / MSVC.dll / .lib / .a 的关系 MinGW / MSVC Qt 中有两种方式编译&#xff1a;一种是MinGW &#xff0c;另一种MSVC&#xff0c;是两种不同的编译器。 MinGW(Minimalist GNUfor Windows)&#xff0c;它是一个可自由使用和自由发布的Windows特定头文件…...

【数学建模】数据预处理

为什么需要数据预处理 数学建模是将实际问题转化为数学模型来解决的过程&#xff0c;而数据预处理是数学建模中非常重要的一步。以下是为什么要进行数据预处理的几个原因&#xff1a; 数据质量&#xff1a;原始数据往往存在噪声、异常值、缺失值等问题&#xff0c;这些问题会对…...

VMware 安装 黑群晖7.1.1-42962 DS918+

本例的用的文件 1、ARPL 1.0beat 引导文件 vmdk格式&#xff1a; https://download.csdn.net/download/mshxuyi/88309308 2、DS918_42962.pat&#xff1a;https://download.csdn.net/download/mshxuyi/88309383 一、引导文件 1、创建一个虚拟机 2、下一步&#xff0c;选稍后…...

OpenCV(二十九):图像腐蚀

1.图像腐蚀原理 腐蚀操作的原理是将一个结构元素&#xff08;也称为核或模板&#xff09;在图像上滑动&#xff0c;并将其与图像中对应位置的像素进行比较。如果结构元素的所有像素与图像中对应位置的像素都匹配&#xff0c;那么该位置的像素值保持不变。如果结构元素的任何一个…...

【网络知识点】三次握手和四次挥手

文章目录 一、三次握手二、四次挥手 一、三次握手 三次握手的原理如下&#xff1a; 客户端向服务器发送一个SYN&#xff08;同步&#xff09;包&#xff0c;其中包含一个随机生成的初始序列号&#xff08;ISN&#xff09;。 服务器收到SYN包后&#xff0c;会发送一个SYNACK&…...

CSS整理

目录 CSS中的& 弹性&#xff08;display:flex&#xff09;布局 flex的对齐方式 justify-content align-items flex-wrap 弹性盒换行 flex:1 flex属性 flex-grow&#xff1a;项目的放大比例 flex-shrink&#xff1a;收缩 flex-basis&#xff1a;初始值&#xff…...

OpenCV 06(图像的基本变换)

一、图像的基本变换 1.1 图像的放大与缩小 - resize(src, dsize, dst, fx, fy, interpolation) - src: 要缩放的图片 - dsize: 缩放之后的图片大小, 元组和列表表示均可. - dst: 可选参数, 缩放之后的输出图片 - fx, fy: x轴和y轴的缩放比, 即宽度和高度的缩放比. - …...

Java 中的日期时间总结

前言 大家好&#xff0c;我是 god23bin&#xff0c;在日常开发中&#xff0c;我们经常需要处理日期和时间&#xff0c;日期和时间可以说是一定会用到的&#xff0c;现在总结下 Java 中日期与时间的基本概念与一些常用的用法。 基本概念 日期&#xff08;年月日&#xff0c;某…...

创建10个线程并发执行(STL/Windows/Linux)

C并发编程入门 目录 STL 写法 #include <thread> #include <iostream> using namespace std;void thread_fun(int arg) {cout << "one STL thread " << arg << " !" << endl; }int main(void) {int thread_count 1…...

三、创建各个展示模块组件

简介 在文件 components 中创建轮播模块组件,引入App.vue展示。欢迎访问个人的简历网站预览效果 本章涉及修改与新增的文件:First.vue、Second.vue、Third.vue、Fourth.vue、Fifth.vue、App.vue、vite-env.d.ts、assets 一、修改vite-env.d.ts文件 /// <reference type…...

推荐一款程序员截图神器!

快来看一下程序员必备的一款截图工具 今天就来和大家说一下作为程序员必备截图神器&#xff0c;几乎每一个程序员都会设置开机自启&#xff0c;因为这个截图功能太太太好用了&#xff01;&#xff01;&#xff01;只要你在键盘上按下F1就可以轻松截取整个屏幕&#xff0c;然后…...

无涯教程-JavaScript - IMCSC函数

描述 IMCSC函数以x yi或x yj文本格式返回复数的余割。 复数的余割定义为正弦的倒数。即 余割(z) 1 /正弦(z) 语法 IMCSC (inumber)争论 Argument描述Required/OptionalInumberA complex number for which you want the cosecant.Required Notes Excel中的复数只是简单…...

Ubuntu22.04 LTS 显卡相关命令

第一部分查看驱显卡信息 一、查看显卡型号 # -i表示不区分大小写 lspci | grep -i nvidia # 必须安装好nvidia驱动 nvidia-smi -L 二、查看显卡驱动版本 cat /proc/driver/nvidia/version 三、查看CUDA、cuDNN版本 # 或者 nvcc -V&#xff08;两个显示的版本一致&#xf…...

《TCP/IP网络编程》阅读笔记--基于 TCP 的半关闭

目录 1--基于TCP的半关闭 1-1--TCP单方面完全断开的问题 1-2--shutdown()函数 1-3--半关闭的必要性 2--基于半关闭的文件传输程序 1--基于TCP的半关闭 1-1--TCP单方面完全断开的问题 Linux 系统中的 close 函数会将 TCP Socket 的连接完全断开&#xff0c;这意味着不能收…...

Rust的模块化

Rust的模块化要从Rust的入口文件谈起。 Rust的程序的入口文件有两个 如果程序类型是可执行应用&#xff0c;入口文件是main.rs&#xff1b;如果程序类型是库&#xff0c;入口文件是lib.rs&#xff1b; 入口文件中&#xff0c;必须声明本地模块&#xff0c;否则编译器在编译过…...

vmware设置桥接模式后ip设置

网络连接方式设置 找到虚拟机里机器的网络设置 左边是宿主机&#xff0c;右边是虚拟机&#xff0c;按照这个设置就可以上网了(IP指定一个没有占用的值&#xff0c;子网掩码和网关设置成一样的)就可以联网了。 over~~...

算法通关村第十七关:白银挑战-贪心高频问题

白银挑战-贪心高频问题 1. 区间问题 所有的区间问题&#xff0c;参考下面这张图 1.1 判断区间是否重叠 LeetCode252 https://leetcode.cn/problems/meeting-rooms/ 思路分析 因为一个人在同一时刻只能参加一个会议&#xff0c;因此题目的本质是判断是否存在重叠区间 将区…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)

一、OpenBCI_GUI 项目概述 &#xff08;一&#xff09;项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台&#xff0c;其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言&#xff0c;首次接触 OpenBCI 设备时&#xff0c;往…...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...

Golang——7、包与接口详解

包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析&#xff0c;分为​​已启动​​和​​未启动​​两种场景&#xff1a; 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​&#xff1a;当其他组件&#xff08;如Activity、Service&#xff09;通过ContentR…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...