科技云报道:AI时代,对构建云安全提出了哪些新要求?
科技云报道原创。
随着企业上云的提速,一系列云安全问题也逐渐暴露出来,云安全问题得到重视,市场不断扩大。
Gartner 发布“2022 年中国 ICT 技术成熟度曲线”显示,云安全已处于技术萌芽期高点,预期在2-5年内有望达到技术生产成熟期。
与此同时,为提高效率,AI在各场景中应用探索从未停歇,尤其是生成式AI的出现,快速应用到企业生产创新的各个环节中,展现出了惊人的能力和效果,也为云安全带来了更多的挑战和机遇。
因此AI和云安全的结合势在必行,一方面需要关注智能化生产的安全方案,另一方面以AI赋能云安全,将构建更强大的防御机制。
智能化生产下的云安全挑战与对策
生成式AI降低了应用门槛,但也对一个企业的数据平台提出了更高的要求。
而很多公司还没有能力构建这样一个高要求的数据平台,或者并未设立一个强大的IT部门运营管理。
- 数据和模型安全是构建AI应用的关键
在训练构建一个生成式AI的模型时,需要大量的非结构化数据。即使一个企业直接去应用一个做好的模型进行微调,也需要有高质量的数据。
如果企业没有规定好数据边界、权限、应用的API的控制不足,就很有可能发生数据泄露。在今年OWASP发布的《大模型应用十大安全风险》中,数据泄露高居第二位。
同时,生成式AI和大语言模型对企业内部管控机制带来一个新的挑战。
大语言模型使用公开服务的需求,要求公司对企业内部数据资产及其他信息资产进行更细颗粒度的管控。
因此贯穿生成式AI全周期的数据治理是非常必要的,从数据源的获取到数据的存储和查询,再到将数据传输给 AI平台进行模型的训练、调优和推理,在数据流动的过程中确保端到端的数据安全,为生成式AI应用提供安全和有价值的数据输入。
例如,亚马逊云科技就为企业数据提供涵盖存储、传输、使用、治理等各个环节的加密及保护服务。
用户可使用Amazon Key Management Service (Amazon KMS),并将其与亚马逊云科技众多服务深度集成轻松保护多种数据;还可以通过Amazon Data Zone使用贯穿整个数据周期的治理服务。
此外,亚马逊云科技还推出了敏感数据保护解决方案,可实现对企业敏感数据的自动化发现并在统一平台管理数据资产。
该解决方案允许客户创建数据目录、使用内置或定制数据识别规则定义敏感数据类型,该方案利用机器学习、模式匹配的方式自动识别敏感数据,并提供可视化面板,使客户更容易对敏感数据进行管理和保护。
另外,模型训练后进入生产环境的安全防护同样重要。需要保证数据输入的安全,防止数据篡改,同时在数据处理的过程中更加注意安全合规和敏感数据的剔除。
- 应用安全是实现AI价值的保障
保障应用安全的第一个阶段是开发流程中的安全(DevSecOps)。
安全需要贯穿到从开发到持续集成、持续部署再到投产、监控以及整个反馈的过程里面来。
第二个阶段是运行中的安全。针对应用的安全访问,企业可构建零信任的应用安全访问策略。
它能够实现按需的授权和认证,零信任不是一个标准的工具或者解决方案,而是一套机制,并且需要经过演练和考验。
同时也需要对访问大模型的应用进行权限管理,确保只有在拥有特定权限的应用,才能访问或者调用大模型里的定制API。
在亚马逊云科技re:lnforce2023大会中国站上,亚马逊云科技大中华区解决方案架构部总监代闻提到,“以前是靠应用程序和网络边界来隔离,现在这种防守的边界感已经改变了,单纯的应用程序和网络边界已经不足以隔离,因而加速了零信任在企业中的落地。”
不过代闻也强调,在关注AI安全时不能仅仅只关注AI应用本身。
“从构建开始,我们就需要把安全作为企业AI战略发展中的核心环节。从一个全栈的角度,去全面审视 应用、模型、数据、基础架构的安全规范、技术策略和平台工具。生成式AI应用就像是海面上的冰山,我们想要在企业里安全地驾驭这项新技术,还需要关注海面下的冰川。”
亚马逊云科技大中华区解决方案架构部总监代闻
AI+云安全有望加速上云之旅
Cybersecurity Insiders今年发布的《2023年全球云安全报告》显示,成本上升、合规性要求、混合和多云环境复杂性、可见性锐减以及技能人才短缺等困境,迫使企业不得不放缓或调整既定云部署战略。
因而,虽然企业工作负载迁移上云的速度总体仍呈现稳步上升趋势,但云部署率同比趋于平稳,而云安全性仍是企业上云之旅的关键痛点。
而由于云安全产品的易用性,不需要繁琐的安装或者是调试,可直接部署,以及按需付费的能力,不会给企业的安全成本带来额外的负担。
因此中国企业在云安全的部署上与国际上其他企业有相近的投入。
AI+云安全构建的更强大的防御机制,为解决这一问题及提高云部署率提供了更多的可能性,目前多家云服务商仍在探索中。
首先在合规方面,目前虽然相关法律法规越来越完善,但随着重要数据加速上云,数据的数量和种类不断增加,客户的业务需求也在持续变化,因此合规难度仍不容小觑。
而将AI应用到合规服务中,能够为大规模批量审查提供安全控制,利用自动化减少手工操作以降低错误,利用AI提供一致性判断,通过AI/ML技术实现自动审查,全面提升合规效率。
其次,AI可以助力实现智能控制、记录管理权限,而这些记录是可以先来支持从权限管控到网络控制再到整体的自动化管理的权限和部署,包括审计。
另外,利用AI可自动扫描代码漏洞、软件的缺陷以及集成过程中的误报等,并及时响应。
结语
目前云安全仍以AI赋能为主,然而随着生成式AI的不断应用,企业从关注其技术的先进性变成关注其提供的业务价值,需求的提出者从技术负责人更多变成业务负责人,AI赋能向AI原生发展将成为一种必然趋势。
建立一个更好的、合规的、安全的AI应用也成为重中之重,更强的防御机制将保障AI发挥更大的作用,并有一个更好的发展。
【关于科技云报道】
专注于原创的企业级内容行家——科技云报道。成立于2015年,是前沿企业级IT领域Top10媒体。获工信部权威认可,可信云、全球云计算大会官方指定传播媒体之一。深入原创报道云计算、大数据、人工智能、区块链等领域。
相关文章:

科技云报道:AI时代,对构建云安全提出了哪些新要求?
科技云报道原创。 随着企业上云的提速,一系列云安全问题也逐渐暴露出来,云安全问题得到重视,市场不断扩大。 Gartner 发布“2022 年中国 ICT 技术成熟度曲线”显示,云安全已处于技术萌芽期高点,预期在2-5年内有望达到…...

如何让 Llama2、通义千问开源大语言模型快速跑在函数计算上?
:::info 本文是“在Serverless平台上构建AIGC应用”系列文章的第一篇文章。 ::: 前言 随着ChatGPT 以及 Stable Diffusion,Midjourney 这些新生代 AIGC 应用的兴起,围绕AIGC应用的相关开发变得越来越广泛,有呈井喷之势,从长远看这波应用的爆…...

Linux内核源码分析 (B.2)虚拟地址空间布局架构
Linux内核源码分析 (B.2)虚拟地址空间布局架构 文章目录 Linux内核源码分析 (B.2)虚拟地址空间布局架构一、Linux内核整体架构及子系统二、Linux内核内存管理架构 一、Linux内核整体架构及子系统 Linux内核只是操作系统当中的一部分,对下管理系统所有硬件设备&…...

Spring系列文章:Spring使用JdbcTemplate
一、简介 JdbcTemplate是Spring提供的⼀个JDBC模板类,是对JDBC的封装,简化JDBC代码。 当然,你也可以不⽤,可以让Spring集成其它的ORM框架,例如:MyBatis、Hibernate等。 第一步:引入依赖 <d…...
[matlab]cvx安装后测试代码
测试环境: windows10 x64 matlab2023a 代码来自官方网站:CVX: Matlab Software for Disciplined Convex Programming | CVX Research, Inc. m 20; n 10; p 4; A randn(m,n); b randn(m,1); C randn(p,n); d randn(p,1); e rand; cvx_beginva…...
【css】margin:auot什么情况下失效
margin:auto只对块级元素有效果,并且在正常文档流margin:automargin:0 auto,css默认在正常文档流里面margin-top和margin-bottom是0 为什么margin: auto能实现水平居中,而垂直居中不行? 一般子…...
linux的dirty page回写磁盘过程中是否允许并发写入更新page?
概述 众所周知Linux内核write系统调用采用pagecache机制加速写入过程,避免write系统调用长时间block应用进程,用户态进程执行write调用的时候,内核只是将用户态buffer copy到内核的pagecache当中,write系统调用就返回了,完全不需要等待数据完全写入存储设备,因为存储设备…...

Docker-基础命令使用
文章目录 前言命令帮助命令执行示意图docker rundocker psdocker inspectdocker execdocker attachdocker stopdocker startdocker topdocker rmdocker prune参考说明 前言 本文主要介绍Docker基础命令的使用方法。 命令帮助 Docker命令获取帮助方法 # docker -h Flag shor…...
【Python 程序设计】Python 中的类型提示【06/8】
目录 一、说明 二、什么是动态类型? 2.1 为什么要使用类型提示? 2.2 局限性 三、基本类型提示 3.1 声明变量的类型 3.2 函数注释 四、Python 中的内置类型 4.1 原子类型与复合类型 五、函数注释 5.1 如何指定函数的参数类型和返回类型 5.2 在函数签名中…...

78 # koa 中间件的实现
上上节实现了上下文的,上一节使用了一下中间件,这一节来实现 koa 的中间件这个洋葱模型。 思路: 储存用户所有的 callback将用户传递的 callback 全部组合起来(redux 里的 compose)组合成一个线性结构依次执行&#…...
国产操作系统麒麟v10中遇到的一些问题
下载pycharm:直接在应用商店 目标:主机1安装了虚拟机,主机2要ping通主机1安装的虚拟机。 前提:主机1,主机2在同一局域网下,同一网段。 网络配置 因为虚拟机的网段不在局域网网段内,局域网下…...

Gridea+GitPage+Gittalk 搭建个人博客
👋通过GrideaGitPage 搭建属于自己的博客! 👻GitPage 负责提供 Web 功能! 😽Gridea 作为本地编辑器,方便 push 文章! 🏷本文讲解如何使用 GrideaGitPage 服务域名(可选&a…...
代码质量保障第2讲:单元测试 - 浅谈单元测试
代码质量保障第2讲:单元测试 - 浅谈单元测试 本文是代码质量保障第2讲,浅谈单元测试。单元测试(unit testing),是指对软件中的最小可测试单元进行检查和验证。这是基础,所以围绕着单元测试,我从…...

“五度晟企通”企业发展服务平台正式发布,帮扶企业行稳致远!
在数字中国建设的大背景下,“五度易链”以企业实际发展需求为牵引,以帮扶企业行稳致远为目标,基于全体量产业大数据,运用NLP、AI等新一代信息技术,打造了数字化ToB企业发展服务平台“五度晟企通”,旨在以数…...

Java类和对象(七千字详解!!!带你彻底理解类和对象)
目录 一、面向对象的初步认知 1、什么是面向对象 2、面向对象和面向过程 (1)传统洗衣服的过程 (2)现代洗衣服过程 编辑 二、类的定义和使用 1、类的定义格式 三、类的实例化 1、什么是实例化 2、类和对象说明 四、t…...

机器学习笔记:node2vec(论文笔记:node2vec: Scalable Feature Learning for Networks)
2016 KDD 1 intro 利用graph上的节点相似性,对这些节点进行embedding 同质性:节点和其周围节点的embedding比较相似 蓝色节点和其周围的节点结构等价性 结构相近的点embedding相近 比如蓝色节点,都处于多个簇的连接处 2 随机游走 2.1 介绍…...
go基础10 -字符串的高效构造与转换
前面提到过,Go原生支持通过/操作符来连接多个字符串以构造一个更长的字符串,并且通过/操作符的字符串连接构造是最自然、开发体验最好的一种。 但Go还提供了其他一些构造字符串的方法,比如: ● 使用fmt.Sprintf; ● 使…...

VR钢铁实训 | 铁前事业部虚拟仿真培训软件
随着科技的发展,虚拟现实技术在各个行业中的应用越来越广泛。在钢铁冶炼行业中,VR技术也逐渐得到了应用,其中铁前事业部虚拟仿真培训软件就是一项非常有优势的技术。 铁前事业部虚拟仿真培训软件是广州华锐互动打造的《钢铁生产VR虚拟培训系统…...

DevOps
DevOps 是开发 (Dev) 和运营 (Ops) 的复合词,它将人、流程和技术结合起来,不断地为客户提供价值。 DevOps 对团队意味着什么? DevOps 使以前孤立的角色(开发、IT 运营、质量工程和安全)可以协调和协作,以生…...

IJ中PHP环境的搭建和使用教程
目录 目录 前言 思维导图 1,PHP环境下载 1.下载链接 2.进行安装 3,自定义路径 4.进行相关的一些库的选择下载 2,进行IJ中PHP环境的配置 2.1,下载PHP插件 2.2,下载过程中的注意事项 3,为什么这么做呢? 3.1,原因 3.2,进行代码…...

铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...

高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?
uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...

DeepSeek越强,Kimi越慌?
被DeepSeek吊打的Kimi,还有多少人在用? 去年,月之暗面创始人杨植麟别提有多风光了。90后清华学霸,国产大模型六小虎之一,手握十几亿美金的融资。旗下的AI助手Kimi烧钱如流水,单月光是投流就花费2个亿。 疯…...

UE5 音效系统
一.音效管理 音乐一般都是WAV,创建一个背景音乐类SoudClass,一个音效类SoundClass。所有的音乐都分为这两个类。再创建一个总音乐类,将上述两个作为它的子类。 接着我们创建一个音乐混合类SoundMix,将上述三个类翻入其中,通过它管理每个音乐…...