代码随想录训练营第五十六天| 583. 两个字符串的删除操作 、72. 编辑距离
583. 两个字符串的删除操作
题目链接/文章讲解/视频讲解:代码随想录
1.代码展示
//583.两个字符串的删除操作
int minDistance(string word1, string word2) {//step1 构建dp数组,dp[i][j]的含义是要使以i-1为结尾的word1和以j-1为结尾的word2//删除其元素后相同所需最小的删除步数vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));//step2 状态转移方程//if (word1[i - 1] == word[j - 1]) 此时不需要删除,dp[i][j] = dp[i - 1][j - 1];//else ,dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1, dp[i - 1][j - 1] + 2);//对应着三种情况,删除word1[i - 1]或者word2[j - 1]或者同时删除//step3 初始化for (int i = 0; i <= word1.size(); i++) {dp[i][0] = i;}for (int j = 0; j <= word2.size(); j++) {dp[0][j] = j;}//step4 开始遍历for (int i = 1; i <= word1.size(); i++) {for (int j = 1; j <= word2.size(); j++) {if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];}else {dp[i][j] = min({ dp[i - 1][j] + 1, dp[i][j - 1] + 1, dp[i - 1][j - 1] + 2 });}}}return dp[word1.size()][word2.size()];
}
2.本题小节
思考: 首先明确dp[i][j]的含义是下标以i-1为结尾的word1和以下标为j-1结尾的word2删除元素相等所需的最少步骤。当word1[i - 1] == word2[j - 1]时,此时不需要删除元素,因此dp[i][j] = dp[i - 1][j - 1];当不相等时,此时既可以删除word1下标i-1处的元素,对应的是dp[i - 1][j] + 1,也可以删除word2下标j-1处的元素,对应的是dp[i][j-1] + 1,也可以是同时删除掉,对应的是dp[i - 1][j - 1] + 2,因此dp[i][j]从上面三种情况中选择最小的。初始化时要注意,dp[i][0]对应的位置初始化为i,dp[0][j]对应位置初始化为j,这个很好想。
步骤:注意思考的内容,按照步骤来即可。
72. 编辑距离
题目链接/文章讲解/视频讲解:代码随想录
1.代码展示
//72.编辑距离
int minDistance(string word1, string word2) {//step1 构建dp数组,dp[i][j]的含义是要使以i-1为结尾的word1和以j-1为结尾的word2//相同需要操作(增加、删减、替换)的次数vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));//step2 状态转移方程//if (word1[i - 1] == word[j - 1]) 此时不需要处理,dp[i][j] = dp[i - 1][j - 1];//else ,dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1, dp[i - 1][j - 1] + 1);//对应着三种情况,删掉word1[i - 1](删除),删掉word2[j - 1](增加),替换//step3 初始化for (int i = 0; i <= word1.size(); i++) {dp[i][0] = i;}for (int j = 0; j <= word2.size(); j++) {dp[0][j] = j;}//step4 开始遍历for (int i = 1; i <= word1.size(); i++) {for (int j = 1; j <= word2.size(); j++) {if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];}else {dp[i][j] = min({ dp[i - 1][j] + 1, dp[i][j - 1] + 1, dp[i - 1][j - 1] + 1 });}}}return dp[word1.size()][word2.size()];
}
2.本题小节
思考:dp[i][j]的含义是以下标i-1为结尾的word1通过增加,删除,替换能够变成以下标j-1为结尾的word2所需要的最小步骤。当word1[i - 1] == word2[j - 1]时,此时不需要操作,则dp[i][j] = dp[i - 1][j - 1];当不相等时,可以通过删除(删除word1[i - 1])、增加(删除word2[j - 1])、和替换(word1[i - 1]替换为word[j - 1])来操作,分别对应的时dp[i - 1][j] + 1、dp[i][j - 1] + 1、dp[i - 1][j - 1] + 1,选择最小情况,初始化和上题一样。
基本步骤:根据思考和动态规划的步骤来即可。
编辑距离总结:代码随想录
相关文章:
代码随想录训练营第五十六天| 583. 两个字符串的删除操作 、72. 编辑距离
583. 两个字符串的删除操作 题目链接/文章讲解/视频讲解:代码随想录 1.代码展示 //583.两个字符串的删除操作 int minDistance(string word1, string word2) {//step1 构建dp数组,dp[i][j]的含义是要使以i-1为结尾的word1和以j-1为结尾的word2//删除其元…...
hive解决了什么问题
hive出现的原因 Hive 出现的原因主要有以下几个: 传统数据仓库无法处理大规模数据:传统的数据仓库通常采用关系型数据库作为底层存储,这种数据库在处理大规模数据时效率较低。MapReduce 难以使用:MapReduce 是一种分布式计算框架…...
Lumion 和 Enscape 应该选择怎样的笔记本电脑?
Lumion 和 Enscape实时渲染对配置要求高,本地配置不够,如何快速解决: 本地普通电脑可一键申请高性能工作站,资产安全保障,供软件中心,各种软件插件一键获取,且即开即用,使用灵活&am…...
ICCV 2023 | MoCoDAD:一种基于人体骨架的运动条件扩散模型,实现高效视频异常检测
论文链接: https://arxiv.org/abs/2307.07205 视频异常检测(Video Anomaly Detection,VAD)扩展自经典的异常检测任务,由于异常情况样本非常少见,因此经典的异常检测通常被定义为一类分类问题(On…...
Mac电脑怎么使用NTFS磁盘管理器 NTFS磁盘详细使用教程
Mac是可以识别NTFS硬盘的,但是macOS系统虽然能够正确识别NTFS硬盘,但只支持读取,不支持写入。换句话说,Mac不支持对NTFS硬盘进行编辑、创建、删除等写入操作,比如将Mac里的文件拖入NTFS硬盘,在NTFS硬盘里新…...
Java设计模式-结构性设计模式(代理设计模式)
简介 为其他对象提供⼀种代理以控制对这个对象的访问,属于结构型模式。客户端并不直接调⽤实际的对象,⽽是通过调⽤代理,来间接的调⽤实际的对象应用场景 各⼤数码专营店,代理⼚商进⾏销售对应的产品,代理商持有真正的…...
线性空间、子空间、基、基坐标、过渡矩阵
线性空间的定义 满足加法和数乘封闭。也就是该空间的所有向量都满足乘一个常数后或者和其它向量相加后仍然在这个空间里。进一步可以理解为该空间中的所有向量满足加法和数乘的组合封闭。即若 V 是一个线性空间,则首先需满足: 注:线性空间里面…...
【MySQL】CRUD (增删改查) 基础
CRUD(增删改查)基础 一. CRUD二. 新增 (Create)1. 单行数据 全列插入2. 多行数据 指定列插入 三. 查询(Retrieve)1. 全列查询2. 指定列查询3. 查询字段为表达式4. 别名5. 去重:DISTINCT6. 排序…...
Socks5代理IP:保障跨境电商的网络安全
在数字化时代,跨境电商已成为全球商业的重要一环。然而,随着其发展壮大,网络安全问题也逐渐浮出水面。为了确保跨境电商的安全和隐私,Socks5代理IP技术成为了一项不可或缺的工具。本文将深入探讨Socks5代理IP在跨境电商中的应用&a…...
macOS通过钥匙串访问找回WiFi密码
如果您忘记了Mac电脑上的WiFi密码,可以通过钥匙串访问来找回它。具体步骤如下: 1.打开Mac电脑的“启动台”,然后在其他文件中找到“钥匙串访问”。 2.运行“钥匙串访问”应用程序,点击左侧的“系统”,然后在右侧找到…...
Debian11之稳定版本Jenkins安装
官方网址 系统要求 机器要求 256 MB 内存,建议大于 512 MB 10 GB 的硬盘空间(用于 Jenkins 和 Docker 镜像)软件要求 Java 8 ( JRE 或者 JDK 都可以) Docker (导航到网站顶部的Get Docker链接以访问适合您平台的Docker下载安装…...
kakfa 3.5 kafka服务端处理消费者客户端拉取数据请求源码
一、服务端接收消费者拉取数据的方法二、遍历请求中需要拉取数据的主题分区集合,分别执行查询数据操作,1、会选择合适的副本读取本地日志数据(2.4版本后支持主题分区多副本下的读写分离) 三、会判断当前请求是主题分区Follower发送的拉取数据请求还是消费…...
【Linux】进程概念I --操作系统概念与冯诺依曼体系结构
Halo,这里是Ppeua。平时主要更新C语言,C,数据结构算法…感兴趣就关注我吧!你定不会失望。 本篇导航 1. 冯诺依曼体系结构为什么这样设计? 2. 操作系统概念为什么我们需要操作系统呢?操作系统怎么进行管理? 计算机是由两部分组…...
BRAM/URAM资源介绍
BRAM/URAM资源简介 Bram和URAM都是FPGA(现场可编程门阵列)中的RAM资源。 Bram是Block RAM的缩写,是Xilinx FPGA中常见的RAM资源之一,也是最常用的资源之一。它是一种单独的RAM模块,通常用于存储大量的数据࿰…...
分享一个基于python的个性推荐餐厅系统源码 餐厅管理系统代码
💕💕作者:计算机源码社 💕💕个人简介:本人七年开发经验,擅长Java、Python、PHP、.NET、Node.js、微信小程序、爬虫、大数据等,大家有这一块的问题可以一起交流! …...
Mysql5.7开启SSL认证且支持Springboot客户端验证
Mysql5.7开启SSL认证 一、查看服务端mysql环境 1.查看是否开启了ssl,"have_ssl" 为YES的时候,数据库是开启加密连接方式的。 show global variables like %ssl%;2.查看数据库版本 select version();3.查看数据库端口 show variables like port;4.查看数据库存放…...
微信小程序的页面滚动事件监听
微信小程序中可以通过 Page 的 onPageScroll 方法来监听页面滚动事件。具体步骤如下: 在页面的 onLoad 方法中注册页面滚动事件监听器: Page({onLoad: function () {wx.pageScrollTo({scrollTop: 0,duration: 0});wx.showLoading({title: 加载中,});wx…...
数据可视化:四大发明的现代转化引擎
在科技和工业的蓬勃发展中,中国的四大发明——造纸术、印刷术、火药和指南针,早已不再是古代创新的象征,而是催生了众多衍生行业的崭新可能性。其中,数据可视化技术正成为这些行业的一颗璀璨明珠,开启了全新的时代。 1…...
HarmonyOS实现几种常见图片点击效果
一. 样例介绍 HarmonyOS提供了常用的图片、图片帧动画播放器组件,开发者可以根据实际场景和开发需求,实现不同的界面交互效果,包括:点击阴影效果、点击切换状态、点击动画效果、点击切换动效。 相关概念 image组件:图片…...
3D视觉测量:计算两个平面之间的夹角(附源码)
文章目录 1. 基本内容2. 代码实现文章目录:形位公差测量关键内容:通过视觉方法实现平面之间夹角的计算1. 基本内容 要计算两个平面之间的夹角,首先需要知道这两个平面的法向量。假设有两个平面,它们的法向量分别为 N 1 和 N 2 N_1 和 N_2...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...
Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
