当前位置: 首页 > news >正文

十)Stable Diffussion使用教程:Lora

LoRA 的全称为 Low-Rank Adaptation(低秩适应),是一种在机器学习中使用的方法,用于解决一些特殊问题,尤其是在数据中存在不均匀性的情况下表现较好。

要理解 LoRA,我们首先需要理解两个概念:低秩和适应。

  • 低秩(Low Rank):在数学中,秩(Rank)是一个描述矩阵信息量的概念。低秩意味着这个矩阵包含的信息比较少。在机器学习中,我们常常使用低秩的方法来简化问题,因为包含的信息少,计算就更快,更容易处理。
  • 适应(Adaptation):适应是指模型可以根据新的数据自我调整,使得模型在新的数据上表现得更好。这对于处理那些数据分布可能会变化的问题非常有用。

那么,LoRA 是怎么工作的呢?

LoRA 的思想是,对于复杂的问题,我们可以找到一个简单的(低秩的)模型作为基础,然后根据我们手头的数据对这个模型进行微调(适应)。这样,我们就可以用一个简单的模型来解决复杂的问题,同时还能保证在新的数据上表现得很好。

我们可以把这个过程比喻成学习骑自行车。起初,你可能会先学习一个简单的模型,比如如何平衡,如何踩踏板等。然后,当你在不同的路面(比如沙地、石头路、上坡、下坡等)上骑车时,你需要对你的骑车方式进行调整,这就像是对原始模型的适应。所以,虽然你开始时学的是一个简单的骑车模型,但是通过适应

相关文章:

十)Stable Diffussion使用教程:Lora

LoRA 的全称为 Low-Rank Adaptation(低秩适应),是一种在机器学习中使用的方法,用于解决一些特殊问题,尤其是在数据中存在不均匀性的情况下表现较好。 要理解 LoRA,我们首先需要理解两个概念:低秩和适应。 低秩(Low Rank):在数学中,秩(Rank)是一个描述矩阵信息量的…...

kafka学习-消费者

目录 1、消费者、消费组 2、心跳机制 3、消费者常见参数配置 4、订阅 5、反序列化 基本概念 自定义反序列化器 6、位移提交 6.1、自动提交 6.2、手动提交 同步提交 异步提交 7、再均衡 7.1、定义与基本概念 7.2、缺陷 7.3、如何避免再均衡 7.4、如何进行组内分…...

Alibaba(商品详情)API接口

为了进行电商平台 的API开发,首先我们需要做下面几件事情。 1)开发者注册一个账号 2)然后为每个alibaba应用注册一个应用程序键(App Key) 。 3)下载alibaba API的SDK并掌握基本的API基础知识和调用 4)利…...

OLED透明屏触控:引领未来科技革命的创新力量

OLED透明屏触控技术作为一项颠覆性的创新,正在引领新一轮科技革命。它将OLED显示技术与触摸技术相结合,实现了透明度和触控功能的完美融合。 在这篇文章中,尼伽将通过引用最新的市场数据、报告和行业动态,详细介绍OLED透明屏触控…...

Ubuntu下QT操作Mysql数据库

本篇总结一下一下Ubuntu下QT操作Mysql数据库。 目录 1. 启动Mysql数据库服务器 2.查看QT支持的数据库驱动 3.连接数据库 4. 增加表和记录 5. 删除记录 6. 修改记录 7. 查询记录 8.完整代码和运行效果 常见错误总结: (1) 数据库服务没启动报错信息 (2) 有…...

sqli --【1--10】

Less-1(联合查询) 1.查看是否有回显 2.查看是否有报错 3.使用联合查询(字符注入) 3.1判断其列数 3.2 判断显示位置 3.3敏感信息查询 Less-2(联合查询) 1.查看是否有回显 2.查看是否有报错 3.使用…...

《自然语言处理(NLP)的最新进展:Transformers与GPT-4的浅析》

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…...

Wireshark 用命令行分析数据包

1,那些情况需要使用命令行 Wireshark一次性提供了太多的信息。使用命令行工具可以限制打印出的信息,最后只显示相关数据,比如用单独一行来显示IP地址。命令行工具适用于过滤数据包捕获文件,并提供结果给另一个支持UNIX管道的工具…...

LVS DR模式负载均衡群集部署

目录 1 LVS-DR 模式的特点 1.1 数据包流向分析 1.2 DR 模式的特点 2 DR模式 LVS负载均衡群集部署 2.1 配置负载调度器 2.1.1 配置虚拟 IP 地址 2.1.2 调整 proc 响应参数 2.1.3 配置负载分配策略 2.2 部署共享存储 2.3 配置节点服务器 2.3.1 配置虚拟 IP 地址 2.3.2…...

探讨前后端分离开发的优势、实践以及如何实现更好的用户体验?

随着互联网技术的迅猛发展,前后端分离开发已经成为现代软件开发的一种重要趋势。这种开发模式将前端和后端的开发工作分开,通过清晰的接口协议进行通信,旨在优化开发流程、提升团队协作效率,并最终改善用户体验。本文将深入探讨前…...

微博一面:JVM预热,你的方案是啥?

说在前面 在40岁老架构师 尼恩的读者社区(50)中,最近有小伙伴拿到了一线互联网企业如微博、阿里、汽车之家、极兔、有赞、希音、百度、网易、滴滴的面试资格,遇到一几个很重要的面试题: JVM预热,你的方案是啥?Springb…...

open与fopen的区别

1. 来源 从来源的角度看,两者能很好的区分开,这也是两者最显而易见的区别: open是UNIX系统调用函数(包括LINUX等),返回的是文件描述符(File Descriptor),它是文件在文件…...

Unity记录一些glsl和hlsl的着色器Shader逆向代码

以下内容一般基于 GLSL 300 之后 以下某些代码行,是“伪代码“,绝大部分是renderDoc 逆向产生标准代码 本人OpenlGL零基础,也不打算重头学 目录 Clip() 剔除函数 discard; FS最终颜色输出 out 和最终颜色相加方程…...

基于Sentinel的微服务保护

前言 Sentinel是Alibaba开源的一款微服务流控组件,用于解决分布式应用场景下服务的稳定性问题。Sentinel具有丰富的应用场景,它基于流量提供一系列的服务保护措施,例如多线程秒杀情况下的系统承载,并发访问下的流量控制&#xff…...

Collectors类作用:

一、Collectors类: 1.1、Collectors介绍 Collectors类,是JDK1.8开始提供的一个的工具类,它专门用于对Stream操作流中的元素各种处理操作,Collectors类中提供了一些常用的方法,例如:toList()、toSet()、to…...

LASSO回归

LASSO回归 LASSO(Least Absolute Shrinkage and Selection Operator,最小绝对值收敛和选择算子算法)是一种回归分析技术,用于变量选择和正则化。它由Robert Tibshirani于1996年提出,作为传统最小二乘回归方法的替代品。 损失函数 1.线性回…...

机器学习中的 K-均值聚类算法及其优缺点。

K-均值聚类算法是一种常见的无监督学习算法,它可以将数据集分成 K 个簇,每个簇内部的数据点尽可能相似,而不同簇之间的数据点应尽可能不同。下面详细讲解 K-均值聚类算法的优缺点: 优点: 简单易用:K-均值…...

云计算与虚拟化

一、概念 什么是云计算? 云计算(cloud computing)是分布式计算的一种,指的是通过网络“云”将巨大的数据计算处理程序分解成无数个小程序,然后,通过多部服务器组成的系统进行处理和分析这些小程序得到结果…...

Linux常见进程类别

目录 常见进程类别 守护进程&精灵进程 任务管理 进程组 作业 作业 | 进程组 会话 w命令 守护进程 守护进程的创建 setsid()函数 daemon()函数 模拟实现daemon函数 前台进程 | 后台进程 僵尸进程 | 孤儿进程 僵尸进程的一些细节 守护进程 | 后台进程 守护…...

智能小车之蓝牙控制并测速小车、wife控制小车、4g控制小车、语音控制小车

目录 1. 蓝牙控制小车 2. 蓝牙控制并测速小车 3. wifi控制测速小车 4. 4g控制小车 5. 语音控制小车 1. 蓝牙控制小车 使用蓝牙模块,串口透传蓝牙模块,又叫做蓝牙串口模块 串口透传技术: 透传即透明传送,是指在数据的传输过…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...