当前位置: 首页 > news >正文

初高(重要的是高中)中数学知识点综合

1. 集合

1.1 集合的由来和确定性

 确定对象构成的整体称为集合(组成集合的元素必须是确定的 ),每个集合内的对象个体成为元素(Element)。确定性: 给定一个集合,任何一个对象是不是这个集合内的元素,就已经确定了。

比如,我国的四大发明,造纸术,印刷术,火药,指南针。就是一个明确的构成,这个集合就是四大发明。

四大发明 = {造纸术,印刷术,火药,指南针}

每个集合内的元素,使用逗号隔开。

元素和集合之间,存在 属于/不属于 两种关系,拿上面的四大发明集合来讲,比如:

造纸术属于四大发明集合;手机不属于四大发明集合;
火药属于四大发明集合;机关枪不属于四大发明集合;

为了方便书写,采用方便的符号形式来进行代替。

属于: ∈ 不属于: ∉

在用上述的例子,替换为符号就是

造纸术 ∈ 四大发明集合;手机 ∉ 四大发明集合;
火药 ∈ 四大发明集合;机关枪 ∉ 四大发明集合;

如果给定一个集合, {大学计算机系所有的高个子学生},那么这就是一个没有办法确定的内容,不能形成一个集合。你没办法明确知道高个子到底是多高。 如果是 {大学计算机系所有身高 > 170的高个子学生},那么这就给我们划分了一个很明确的界限,大于 170 cm 的同学,都可以被划分为高个子学生列表。那么就能形成一个集合。

测试题

1. 大于 3 小于 11 的偶数。		(是)
2. 我国的小河流。			(不是)
3. 所有的正方形。			(是)
4. 本班跑步很快的同学。		(不是)
5. 与1接近的实数的全体。		(不是)
6. 1——10以内的全体质数。		(是)

总结

1. 集合是一个由确定对象构成的整体。
2. 集合内的对象称为元素(Element)。
3. 属于 ∈   /   不属于 ∉
4. 集合的确定性,给定一个集合,任何一个对象是不是这个集合内的元素,就已经确定了。
5. 可见,对于给定一个集合和给定一个对象,这个对象是否为这个集合的元素,只有 “是” 与 “不是”,这两种情况,这就是集合中元素
所具有的确定性。

1.2 集合中元素的特性

在这里插入图片描述

  1. 确定性
    借鉴上面。

  2. 互异性

在集合中,集合内的元素必须是互异的,也就是说,对于一个给定的集合,他的任何两个元素都是不同的。
因为集合中的元素是没有重复现象的,所以任何两个相同的元素在同一集合内,只能算作这个集合中的一个元素。
  1. 无序性
集合与其中元素的排列次序无关,也就是说集合中的元素是不排序的。
例如: {1, 2} 也可以写成 {2, 1},他们两个是一样的。

1.3 常见数集

1.3.1 学习目标
  1. 理解常见数集的定义。
  2. 熟记常见数集的符号。
  3. 会判断数字与不同数集之间的关系。
1.3.2 自然数(Natural Number) 用以计量事物的件数 : N

自然数英语为 Natural Number, 所以用 大写 N 来表示自然数集

N = {1, 2, 3, 4, 5, 6, 7...}

在1993年对于自然数集做了重新定义,定义为:

  • 不小于 0 的所有整数叫 自然数集 / 非负整数 的集,也就是说,0 也是自然数集内的元素

扩展,在中国大陆2000年后的数学教材,自然数集内都包括 0。

在N后做一些特殊标记也有不同的意义,比如:

  1. N* : 除0意外的自然数集
  2. N+ : (+可以在N上面,也可以在N下面)正自然数集。
  3. 以此类推…
1.3.2 整数集(Whole Number): Z

整数并没有用 W 来表示整数集,有一种说法是:德国女数学家,诺特 (1882-1935)德意志数学家,抽象代数的奠基人,她提出的整数环对于整数有重大的意义 所以整数取得是德语 Zahlen(支付,数字)的首字母,Z

Z = {0, 1, -1, 2, -2....}
1.3.3 分数 (两个整数之比 — 商)

分数,指的是两个整数之比,古希腊数学家毕达哥拉斯提出了万物皆数的概念,还发现了著名的黄金比例。他们认为,整数和分数,就可以解释整个世界了。

1.3.4 有理数:两个整数之比 — 商(Quotient) : Q

所以,有理数采用商的首字母,Q来表示有理数集。准确来说。有理数包括整数和分数

  • Q = {整数和非零整数的比}

整数也可以表示成 9/1 (一分之九),8/1,5/1。 分数也可以表示为, 1/2, 3/8, 1/3

1.3.5 无理数:根号二是有理数吗?

并不是,常见的无理数有,开不尽的根号。 根号3,根号5,根号7,根号9.1 …, 无限不循环小数 Π = 3.1415926535…,自然数e等。不过到目前为止,无理数还没有统一的字幕表示。所有的有理数 + 无理数就是实数

1.3.6 实数(Real Number):R

实数集是所有的有理数 + 无理数,实数集是目前所学的最大的数集。我们所有学习过的数字都在这个集合里面。

在这里插入图片描述

1.3.7 练习题

用符号 “∈” 或者 “∉”填空。

1. 5__N,  -5__N,  0__N2. 3__Z,  -3__Z,  3.1__Z3. 3.14__Q,  Π__Q,  根号2__Q4. Π__R,  3.1__R,  根号三__R

答案

N是自然数集,大于切等于0的整数都是数集内的内容1. ∈,∉,∈Z是整数集,大于小于等于0的所有整数都属于集合内的内容。2. ∈,∈,∉Q是有理数集,也就是两数之比和所有的整数(小数,分数,正整数,负整数,0)3. ∈,∉,∉R是实数集,包括了N,Z,Q,无理数集,是学习过的最大的数集4. ∈,∈,∈

特殊符号集

1. 0__N+,  0__Z+,  0__R*
2. -3__Z+, -3__Z-, -3__Z*

答案

在数集后面跟 + 表示数集内的所有正数对象,  - 表示所有的复数对象,R表示0除外的所有对象
3. ∉,∉,∉
4. ∉,∈,∈
1.3.8 总结

学习了各个数集。总结内容如下

  1. N(自然数集) < Z(整数集) < Q(有理数集) < R(实数集),实际上是不能这样表示的,需要稍微改造一下。
  2. N(自然数集) ∈ Z(整数集) ∈ Q(有理数集) ∈ R(实数集)

1.4 集合的表示方法

相关文章:

初高(重要的是高中)中数学知识点综合

1. 集合 1.1 集合的由来和确定性 确定对象构成的整体称为集合&#xff08;组成集合的元素必须是确定的 &#xff09;&#xff0c;每个集合内的对象个体成为元素(Element)。确定性&#xff1a; 给定一个集合&#xff0c;任何一个对象是不是这个集合内的元素&#xff0c;就已经确…...

Fiddler 系列教程(二) Composer创建和发送HTTP Request跟手机抓包

Fiddler Composer介绍 Composer的官方帮助文档&#xff1a;http://www.fiddler2.com/fiddler/help/composer.asp Fiddler的作者把HTTP Request发射器取名叫Composer(中文意思是&#xff1a;乐曲的创造者), 很有诗意 Fiddler Composer的功能就是用来创建HTTP Request 然后发送…...

淘宝平台开放接口API接口

淘宝平台开放接口API接口是指淘宝平台提供给第三方开发者的一组接口&#xff0c;用于实现与淘宝平台的数据交互和功能扩展。通过API接口&#xff0c;第三方开发者可以获取淘宝平台上的商品信息、订单信息、用户信息等数据&#xff0c;也可以实现商品的发布、订单的创建和支付等…...

缓存夺命连环问

1. 为什么要用缓存&#xff1f; 用缓存&#xff0c;主要有两个用途&#xff1a;高性能、高并发。 高性能 假设这么个场景&#xff0c;你有个操作&#xff0c;一个请求过来&#xff0c;吭哧吭哧你各种乱七八糟操作 MySQL&#xff0c;半天查出来一个结果&#xff0c;耗时 600m…...

模型生成自动化测试用例

自动产生的测试用例本就应该由程序自动执行&#xff0c;这其实也就是NModel推荐的模式。先回过头来看看文章中制作的模型&#xff0c;模型里面将登录、注销、用户名以及密码等要素都抽象出来了&#xff0c;而NModel是以这些抽象出来的动作&#xff08;登录、注销&#xff09;和…...

归并排序-面试例子

小数和问题 描述 在一个数组中&#xff0c;一个数左边比它小的数的总和&#xff0c;叫数的小和&#xff0c;所有数的小和累加起来&#xff0c;叫数组小和。求数组小和。 例子 5 2 6 1 7 小和原始的求法是&#xff1a;任何一个数左边比它小的数累加起来。 5左边比它小数累加…...

docker 生成镜像的几个问题

docker 生成镜像的几个问题 根据jdk8.tar.gz 打包Jdk8 镜像失败运行镜像报错差不多是网络ip错误,在网上说重启docker即可解决运行mysql5.7.25 镜像失败向daemon.json文件添加内容导致docker重启失败docker run 命令常用参数根据jdk8.tar.gz 打包Jdk8 镜像失败 首选做准备工作…...

云计算时代的采集利器

大家好&#xff01;在今天的知识分享中&#xff0c;我们将探讨一个在云计算环境中的爬虫应用利器——独享IP。如果你是一名爬虫程序员&#xff0c;或者对数据采集和网络爬虫有浓厚的兴趣&#xff0c;那么这篇文章将向你展示独享IP在云计算环境下的应用价值。 1. 什么是独享IP&…...

【Unity编辑器扩展】| Inspector监视器面板扩展

前言【Unity编辑器扩展】| Inspector监视器面板扩展一、ContextMenu和ContextMenuItem二、Custom Editors 自定义编辑器三、Property Drawer 属性绘制器总结前言 前面我们介绍了Unity中编辑器扩展的一些基本概念及基础知识,还有编辑器扩展中用到的相关特性Attribute介绍。后面…...

Redis配置

关系型数据库和非关系型数据库 ①了解关系和非关系 关系型数据库 一个结构化的数据库&#xff0c;创建在关系模型基础上&#xff0c;一般面向于记录&#xff0c;包括Oracle、MySQL、SQL Server、Microsoft Access、DB2、postgreSQL等 非关系型数据库 除了主流的关系型数据库…...

CSDN每日一练 |『小艺照镜子』『Ctrl+X,Ctrl+V』『括号上色』2023-09-11

CSDN每日一练 |『小艺照镜子』『Ctrl+X,Ctrl+V』『括号上色』2023-09-11 一、题目名称:小艺照镜子二、题目名称:Ctrl+X,Ctrl+V三、题目名称:括号上色一、题目名称:小艺照镜子 时间限制:1000ms内存限制:256M 题目描述: 已知字符串str。 输出字符串str中最长回文串的长度…...

React 全栈体系(四)

第二章 React面向组件编程 六、组件的生命周期 1. 效果 需求:定义组件实现以下功能&#xff1a; 让指定的文本做显示 / 隐藏的渐变动画从完全可见&#xff0c;到彻底消失&#xff0c;耗时2S点击“不活了”按钮从界面中卸载组件 <!DOCTYPE html> <html lang"e…...

各种UI库使用总结

各种UI库使用总结 工作了这么年&#xff0c;使用了一些UI库&#xff0c;简单的总结一下&#xff0c;UI库也是五花八门&#xff0c;根据自己的产品&#xff0c;应用场景吧&#xff0c;没有绝对合适的&#xff0c;各有各的应用场景吧&#xff01; QT 这几年前后在一些嵌入式上…...

2023Web前端开发面试手册

​​​​​​​​ HTML基础 1. HTML 文件中的 DOCTYPE 是什么作用&#xff1f; HTML超文本标记语言: 是一个标记语言, 就有对应的语法标准 DOCTYPE 即 Document Type&#xff0c;网页文件的文档类型标准。 主要作用是告诉浏览器的解析器要使用哪种 HTML规范 或 XHTML规范…...

一文了解数据科学Notebook

编者按&#xff1a; 主要介绍什么是Notebook&#xff0c;Notebook在数据科学领域的应用的重要性与优势&#xff0c;以及数据科学家/算法团队在选择Notebook时需考虑哪些关键因素。同时&#xff0c;基于Notebook的筛选考量维度&#xff0c;对常见的Notebook进初步对比分析&#…...

2020年12月 C/C++(二级)真题解析#中国电子学会#全国青少年软件编程等级考试

C/C++编程(1~8级)全部真题・点这里 第1题:数组指定部分逆序重放 将一个数组中的前k项按逆序重新存放。例如,将数组8,6,5,4,1前3项逆序重放得到5,6,8,4,1。 时间限制:1000 内存限制:65536 输入 输入为两行: 第一行两个整数,以空格分隔,分别为数组元素的个数n(1 < n…...

关于ChatGPT的个人的一些观点

问题 1 Q: 你认为ChatGPT是一款非常有用的工具吗&#xff1f; A: 我认为ChatGPT是一款非常有用的工具。它可以帮助人们解决各种问题&#xff0c;包括技术问题、心理问题、生活问题等等。同时&#xff0c;ChatGPT也可以成为人们分享想法和交流的平台&#xff0c;增强人与人之间…...

Solidity 小白教程:13. 继承

Solidity 小白教程&#xff1a;13. 继承 这一讲&#xff0c;我们介绍solidity中的继承&#xff08;inheritance&#xff09;&#xff0c;包括简单继承&#xff0c;多重继承&#xff0c;以及修饰器&#xff08;modifier&#xff09;和构造函数&#xff08;constructor&#xff…...

队列(Queue)的顶级理解

目录 1.队列(Queue) 的概念 2.单链表模拟实现队列 2.1创建队列 2.2入队列 2.3判断是否为空 2.4出队列 2.5获取队头元素 2.6完整代码&#xff1a; 2.7双向链表模拟实现队列代码 3.数组模拟实现队列代码 3.1创建队列 3.2判断是否为满 3.3检查是否为空 3.4插入元素 3…...

选择 Guava EventBus 还是 Spring Framework ApplicationEvent

文章首发地址 Spring Framework ApplicationEvent Spring Framework 的 ApplicationEvent 是 Spring 框架提供的一种事件机制&#xff0c;用于实现发布和订阅事件的功能。它基于观察者模式&#xff0c;允许应用程序内的组件之间进行松耦合的通信。 下面是关于 Spring Frame…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行&#xff01; sudo su - 1. CentOS 系统&#xff1a; yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐&#xff1a;「storms…...

给网站添加live2d看板娘

给网站添加live2d看板娘 参考文献&#xff1a; stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下&#xff0c;文章也主…...

VisualXML全新升级 | 新增数据库编辑功能

VisualXML是一个功能强大的网络总线设计工具&#xff0c;专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑&#xff08;如DBC、LDF、ARXML、HEX等&#xff09;&#xff0c;并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...

论文阅读:Matting by Generation

今天介绍一篇关于 matting 抠图的文章&#xff0c;抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法&#xff0c;已经有很多的工作和这个任务相关。这两年 diffusion 模型很火&#xff0c;大家又开始用 diffusion 模型做各种 CV 任务了&am…...