C# Onnx Yolov8 Seg 分割
效果

项目

代码
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using static System.Net.Mime.MediaTypeNames;namespace Onnx_Yolov8_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;string classer_path;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;SegmentationResult result_pro;Mat result_image;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_ontainer;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors_det;Tensor<float> result_tensors_proto;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);pictureBox2.Image = null;}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}// 配置图片数据image = new Mat(image_path);int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);Rect roi = new Rect(0, 0, image.Cols, image.Rows);image.CopyTo(new Mat(max_image, roi));float[] det_result_array = new float[8400 * 116];float[] proto_result_array = new float[32 * 160 * 160];float[] factors = new float[4];factors[0] = factors[1] = (float)(max_image_length / 640.0);factors[2] = image.Rows;factors[3] = image.Cols;// 将图片转为RGB通道Mat image_rgb = new Mat();Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);Mat resize_image = new Mat();Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));// 输入Tensor// input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });for (int y = 0; y < resize_image.Height; y++){for (int x = 0; x < resize_image.Width; x++){input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;}}//将 input_tensor 放入一个输入参数的容器,并指定名称input_ontainer.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_ontainer);dt2 = DateTime.Now;// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors_det = results_onnxvalue[0].AsTensor<float>();result_tensors_proto = results_onnxvalue[1].AsTensor<float>();det_result_array = result_tensors_det.ToArray();proto_result_array = result_tensors_proto.ToArray();resize_image.Dispose();image_rgb.Dispose();result_pro = new SegmentationResult(classer_path, factors);result_image = result_pro.draw_result(result_pro.process_result(det_result_array, proto_result_array), image.Clone());if (!result_image.Empty()){pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";}else{textBox1.Text = "无信息";}}private void Form1_Load(object sender, EventArgs e){startupPath = System.Windows.Forms.Application.StartupPath;model_path = startupPath + "\\yolov8n-seg.onnx";classer_path = startupPath + "\\yolov8-detect-lable.txt";// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;// 设置为CPU上运行options.AppendExecutionProvider_CPU(0);// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 输入Tensorinput_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });// 创建输入容器input_ontainer = new List<NamedOnnxValue>();}}
}
完整Demo下载
exe程序下载
相关文章:
 
C# Onnx Yolov8 Seg 分割
效果 项目 代码 using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System…...
 
Postman接口测试流程
一、工具安装 ● 安装Postman有中文版和英文版,可以选择自己喜欢的版本即可。安装时重新选择一下安装路径(也可以默认路径),一直下一步安装完成即可。(本文档采用英文版本)安装文件网盘路径链接࿱…...
 
探索GreatADM:如何快速定义监控
引文 在数据库运维过程中,所使用的运维管理平台是否存在这样的问题: 1、默认监控粒度不够,业务需要更细颗粒度的监控数据。2、平台默认的监控命令不适合,需要调整阈值量身定制监控策略。3、不同类型的实例或组件需要有不同的监控重点,但管理平台监控固…...
 
C# 参数名加冒号,可以打乱参数顺序
今天看到Python有这种语法,参数名后面跟着等号写参数,联想到前几天用到的Serilog,好像有个参数名加冒号的写法,搜索了一下,果真有这种用法。 函数特别大的时候,用这种方法很直观,而且参数可以打…...
 
AVL树 模拟实现(插入)
目录 模拟插入节点 左单旋 右单旋 右左双旋 左右双旋 总结 实现 插入实现 左单旋实现 右单旋实现 右左双旋实现 左右双旋实现 AVL树 模拟实现(插入) AVL 树,是高度平衡二叉搜索树,其主要通过旋转来控制其左右子树的高…...
Java面试整理(三)《JavaSE》
反射机制(低) 在我刚开始学Java的时候,大家都很难理解反射这个概念,在实际开发中,虽然都有反射的踪影,但感觉自己又能理解是的。反射机制是指在程序运行时,对任意一个类都能获取其所有属性和方法,并且对任意一个对象都能调用其任意一个方法。 反射的步骤如下: 获取想要…...
 
LeetCode 1282. Group the People Given the Group Size They Belong To【哈希表】1267
本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章…...
 
Vue2项目练手——通用后台管理项目第八节
Vue2项目练手——通用后台管理项目 菜单权限功能tab.jsLogin.vueCommonAside.vuerouter/index.js 权限管理问题解决router/tab.jsCommonHeader.vuemain.js 菜单权限功能 不同的账号登录,会有不同的菜单权限通过url输入地址来显示页面对于菜单的数据在不同页面之间的…...
 
leetcode872. 叶子相似的树(java)
叶子相似的树 题目描述递归 题目描述 难度 - 简单 leetcode - 872. 叶子相似的树 请考虑一棵二叉树上所有的叶子,这些叶子的值按从左到右的顺序排列形成一个 叶值序列 。 举个例子,如上图所示,给定一棵叶值序列为 (6, 7, 4, 9, 8) 的树。 如果…...
 
【Linux从入门到精通】信号(初识信号 信号的产生)
本篇文章会对Linux下的信号进行详细解释。主要内容是什么是信号、信号的产生、核心转储等问题。希望本篇文章会对你有所帮助。 文章目录 引入 一、初识信号 1、1 生活中的信号 1、2 Linux 下的信号 1、3 信号进程所得的初识结论 二、信号的产生 2、1 用户通过终端输入产生信号 …...
Golang综合项目实战(一)
Golang综合项目实战(一) 01-项目简介02-项目架构、术语、运行结果03-创建并初始化项目04-创建用户模型和错误处理05-创建密码加密工具类06-保存密码之前的hooks07-创建用户名密码验证工具类08-用户数据库操作逻辑09-操作用户service10-创建商品分类模型…...
springmvc 获取项目中的所有请求路径
springboot/springmvc 获取项目中的所有请求路径 1. 编写业务代码 Autowiredprivate WebApplicationContext applicationContext;GetMapping("/getAllURL")public RestfulResult getAllURL() {// 获取springmvc处理器映射器组件对象 RequestMappingHandlerMapping无…...
 
【React学习】React高级特性
1. 函数式组件和类组件区别 函数式组件 函数式组件是一种简单的组件定义方式,它是一个以JavaScript函数为基础的组件。 可以把函数式组件理解为纯函数,它的输入为props,输出为JSX。函数式组件没有状态,也没有生命周期。 functio…...
 
如何在Windows系统搭建filebrowser私人网盘并实现在外网访问本地内网
Windows系统搭建网盘神器filebrowser结合内网穿透实现公网访问 文章目录 Windows系统搭建网盘神器filebrowser结合内网穿透实现公网访问前言1.下载安装File Browser2.启动访问File Browser3.安装cpolar内网穿透3.1 注册账号3.2 下载cpolar客户端3.3 登录cpolar web ui管理界面3…...
蓝桥杯官网练习题(算式900)
题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 小明的作业本上有道思考题: 看下面的算式: (□□□□-□□□□)*□□900其中的小方块代表 0 ~ 9 的数字,这 10 个方块刚好包含了…...
【C++从入门到精通】第1篇:C++基础知识(上)
文章目录 1.1 C语句和程序结构1.1.1 本篇介绍1.1.2 语句1.1.3 函数和主函数1.1.4 解析Hello world1.1.5 语法和语法错误1.1.6 练习时间 1.2 注释1.2.1 单行注释1.2.2 多行注释1.2.3 正确使用注释1.2.4 注释掉代码 1.3 对象和变量1.3.1 数据和值1.3.2 对象和变量1.3.3 变量实例化…...
 
liunx系统无sudo或管理员权限安装rar解压安装包
liunx无sudo权限安装rar解压安装包 (1)正常liunx安装rar(2)无sudo\root(管理员身份)时如何安装rar (1)正常liunx安装rar 1、下载安装包 WinRAR archiver, a powerful tool to process RAR and ZIP files (r…...
 
浅析目标检测入门算法:YOLOv1,SSD,YOLOv2,YOLOv3,CenterNet,EfficientDet,YOLOv4
本文致力于让读者对以下这些模型的创新点和设计思想有一个大体的认识,从而知晓YOLOv1到YOLOv4的发展源流和历史演进,进而对目标检测技术有更为宏观和深入的认知。本文讲解的模型包括:YOLOv1,SSD,YOLOv2,YOLOv3,CenterNet,EfficientDet,YOLOv4…...
 
C++:类和对象(三)
本文主要介绍初始化列表、static成员、友元、内部类、匿名对象、拷贝对象时编译器的优化。 目录 一、再谈构造函数 1.构造函数体赋值 2.初始化列表 3.explicit关键字 二、static成员 1.概念 2.特性 三、友元 1.友元函数 2.友元类 四、内部类 五、匿名对象 六、拷…...
 
分布式系统第三讲:全局唯一ID实现方案
分布式系统第三讲:全局唯一ID实现方案 本文主要介绍常见的分布式ID生成方式,大致分类的话可以分为两类:一种是类DB型的,根据设置不同起始值和步长来实现趋势递增,需要考虑服务的容错性和可用性; 另一种是类snowflake型…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
 
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
 
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
 
多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
 
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
 
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
